Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Sign in / Register
Toggle navigation
S
Stable Diffusion Webui
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Locked Files
Issues
0
Issues
0
List
Boards
Labels
Service Desk
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Security & Compliance
Security & Compliance
Dependency List
License Compliance
Packages
Packages
List
Container Registry
Analytics
Analytics
CI / CD
Code Review
Insights
Issues
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
novelai-storage
Stable Diffusion Webui
Commits
fecb990d
Commit
fecb990d
authored
Jan 28, 2023
by
AUTOMATIC1111
Committed by
GitHub
Jan 28, 2023
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #7309 from brkirch/fix-embeddings
Fix embeddings, upscalers, and refactor `--upcast-sampling`
parents
41e76d12
f9edd578
Changes
6
Hide whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
26 additions
and
14 deletions
+26
-14
modules/devices.py
modules/devices.py
+8
-3
modules/processing.py
modules/processing.py
+8
-7
modules/realesrgan_model.py
modules/realesrgan_model.py
+1
-1
modules/sd_hijack.py
modules/sd_hijack.py
+1
-1
modules/sd_hijack_unet.py
modules/sd_hijack_unet.py
+7
-1
webui-macos-env.sh
webui-macos-env.sh
+1
-1
No files found.
modules/devices.py
View file @
fecb990d
...
@@ -87,6 +87,14 @@ dtype_unet = torch.float16
...
@@ -87,6 +87,14 @@ dtype_unet = torch.float16
unet_needs_upcast
=
False
unet_needs_upcast
=
False
def
cond_cast_unet
(
input
):
return
input
.
to
(
dtype_unet
)
if
unet_needs_upcast
else
input
def
cond_cast_float
(
input
):
return
input
.
float
()
if
unet_needs_upcast
else
input
def
randn
(
seed
,
shape
):
def
randn
(
seed
,
shape
):
torch
.
manual_seed
(
seed
)
torch
.
manual_seed
(
seed
)
if
device
.
type
==
'mps'
:
if
device
.
type
==
'mps'
:
...
@@ -199,6 +207,3 @@ if has_mps():
...
@@ -199,6 +207,3 @@ if has_mps():
cumsum_needs_bool_fix
=
not
torch
.
BoolTensor
([
True
,
True
])
.
to
(
device
=
torch
.
device
(
"mps"
),
dtype
=
torch
.
int64
)
.
equal
(
torch
.
BoolTensor
([
True
,
False
])
.
to
(
torch
.
device
(
"mps"
))
.
cumsum
(
0
))
cumsum_needs_bool_fix
=
not
torch
.
BoolTensor
([
True
,
True
])
.
to
(
device
=
torch
.
device
(
"mps"
),
dtype
=
torch
.
int64
)
.
equal
(
torch
.
BoolTensor
([
True
,
False
])
.
to
(
torch
.
device
(
"mps"
))
.
cumsum
(
0
))
torch
.
cumsum
=
lambda
input
,
*
args
,
**
kwargs
:
(
cumsum_fix
(
input
,
orig_cumsum
,
*
args
,
**
kwargs
)
)
torch
.
cumsum
=
lambda
input
,
*
args
,
**
kwargs
:
(
cumsum_fix
(
input
,
orig_cumsum
,
*
args
,
**
kwargs
)
)
torch
.
Tensor
.
cumsum
=
lambda
self
,
*
args
,
**
kwargs
:
(
cumsum_fix
(
self
,
orig_Tensor_cumsum
,
*
args
,
**
kwargs
)
)
torch
.
Tensor
.
cumsum
=
lambda
self
,
*
args
,
**
kwargs
:
(
cumsum_fix
(
self
,
orig_Tensor_cumsum
,
*
args
,
**
kwargs
)
)
orig_narrow
=
torch
.
narrow
torch
.
narrow
=
lambda
*
args
,
**
kwargs
:
(
orig_narrow
(
*
args
,
**
kwargs
)
.
clone
()
)
modules/processing.py
View file @
fecb990d
...
@@ -173,8 +173,7 @@ class StableDiffusionProcessing:
...
@@ -173,8 +173,7 @@ class StableDiffusionProcessing:
midas_in
=
torch
.
from_numpy
(
transformed
[
"midas_in"
][
None
,
...
])
.
to
(
device
=
shared
.
device
)
midas_in
=
torch
.
from_numpy
(
transformed
[
"midas_in"
][
None
,
...
])
.
to
(
device
=
shared
.
device
)
midas_in
=
repeat
(
midas_in
,
"1 ... -> n ..."
,
n
=
self
.
batch_size
)
midas_in
=
repeat
(
midas_in
,
"1 ... -> n ..."
,
n
=
self
.
batch_size
)
conditioning_image
=
self
.
sd_model
.
get_first_stage_encoding
(
self
.
sd_model
.
encode_first_stage
(
source_image
.
to
(
devices
.
dtype_vae
)
if
devices
.
unet_needs_upcast
else
source_image
))
conditioning_image
=
self
.
sd_model
.
get_first_stage_encoding
(
self
.
sd_model
.
encode_first_stage
(
source_image
))
conditioning_image
=
conditioning_image
.
float
()
if
devices
.
unet_needs_upcast
else
conditioning_image
conditioning
=
torch
.
nn
.
functional
.
interpolate
(
conditioning
=
torch
.
nn
.
functional
.
interpolate
(
self
.
sd_model
.
depth_model
(
midas_in
),
self
.
sd_model
.
depth_model
(
midas_in
),
size
=
conditioning_image
.
shape
[
2
:],
size
=
conditioning_image
.
shape
[
2
:],
...
@@ -218,7 +217,7 @@ class StableDiffusionProcessing:
...
@@ -218,7 +217,7 @@ class StableDiffusionProcessing:
)
)
# Encode the new masked image using first stage of network.
# Encode the new masked image using first stage of network.
conditioning_image
=
self
.
sd_model
.
get_first_stage_encoding
(
self
.
sd_model
.
encode_first_stage
(
conditioning_image
.
to
(
devices
.
dtype_vae
)
if
devices
.
unet_needs_upcast
else
conditioning_image
))
conditioning_image
=
self
.
sd_model
.
get_first_stage_encoding
(
self
.
sd_model
.
encode_first_stage
(
conditioning_image
))
# Create the concatenated conditioning tensor to be fed to `c_concat`
# Create the concatenated conditioning tensor to be fed to `c_concat`
conditioning_mask
=
torch
.
nn
.
functional
.
interpolate
(
conditioning_mask
,
size
=
latent_image
.
shape
[
-
2
:])
conditioning_mask
=
torch
.
nn
.
functional
.
interpolate
(
conditioning_mask
,
size
=
latent_image
.
shape
[
-
2
:])
...
@@ -229,16 +228,18 @@ class StableDiffusionProcessing:
...
@@ -229,16 +228,18 @@ class StableDiffusionProcessing:
return
image_conditioning
return
image_conditioning
def
img2img_image_conditioning
(
self
,
source_image
,
latent_image
,
image_mask
=
None
):
def
img2img_image_conditioning
(
self
,
source_image
,
latent_image
,
image_mask
=
None
):
source_image
=
devices
.
cond_cast_float
(
source_image
)
# HACK: Using introspection as the Depth2Image model doesn't appear to uniquely
# HACK: Using introspection as the Depth2Image model doesn't appear to uniquely
# identify itself with a field common to all models. The conditioning_key is also hybrid.
# identify itself with a field common to all models. The conditioning_key is also hybrid.
if
isinstance
(
self
.
sd_model
,
LatentDepth2ImageDiffusion
):
if
isinstance
(
self
.
sd_model
,
LatentDepth2ImageDiffusion
):
return
self
.
depth2img_image_conditioning
(
source_image
.
float
()
if
devices
.
unet_needs_upcast
else
source_image
)
return
self
.
depth2img_image_conditioning
(
source_image
)
if
self
.
sd_model
.
cond_stage_key
==
"edit"
:
if
self
.
sd_model
.
cond_stage_key
==
"edit"
:
return
self
.
edit_image_conditioning
(
source_image
)
return
self
.
edit_image_conditioning
(
source_image
)
if
self
.
sampler
.
conditioning_key
in
{
'hybrid'
,
'concat'
}:
if
self
.
sampler
.
conditioning_key
in
{
'hybrid'
,
'concat'
}:
return
self
.
inpainting_image_conditioning
(
source_image
.
float
()
if
devices
.
unet_needs_upcast
else
source_image
,
latent_image
,
image_mask
=
image_mask
)
return
self
.
inpainting_image_conditioning
(
source_image
,
latent_image
,
image_mask
=
image_mask
)
# Dummy zero conditioning if we're not using inpainting or depth model.
# Dummy zero conditioning if we're not using inpainting or depth model.
return
latent_image
.
new_zeros
(
latent_image
.
shape
[
0
],
5
,
1
,
1
)
return
latent_image
.
new_zeros
(
latent_image
.
shape
[
0
],
5
,
1
,
1
)
...
@@ -418,7 +419,7 @@ def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, see
...
@@ -418,7 +419,7 @@ def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, see
def
decode_first_stage
(
model
,
x
):
def
decode_first_stage
(
model
,
x
):
with
devices
.
autocast
(
disable
=
x
.
dtype
==
devices
.
dtype_vae
):
with
devices
.
autocast
(
disable
=
x
.
dtype
==
devices
.
dtype_vae
):
x
=
model
.
decode_first_stage
(
x
.
to
(
devices
.
dtype_vae
)
if
devices
.
unet_needs_upcast
else
x
)
x
=
model
.
decode_first_stage
(
x
)
return
x
return
x
...
@@ -1007,7 +1008,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
...
@@ -1007,7 +1008,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
image
=
torch
.
from_numpy
(
batch_images
)
image
=
torch
.
from_numpy
(
batch_images
)
image
=
2.
*
image
-
1.
image
=
2.
*
image
-
1.
image
=
image
.
to
(
device
=
shared
.
device
,
dtype
=
devices
.
dtype_vae
if
devices
.
unet_needs_upcast
else
Non
e
)
image
=
image
.
to
(
shared
.
devic
e
)
self
.
init_latent
=
self
.
sd_model
.
get_first_stage_encoding
(
self
.
sd_model
.
encode_first_stage
(
image
))
self
.
init_latent
=
self
.
sd_model
.
get_first_stage_encoding
(
self
.
sd_model
.
encode_first_stage
(
image
))
...
...
modules/realesrgan_model.py
View file @
fecb990d
...
@@ -46,7 +46,7 @@ class UpscalerRealESRGAN(Upscaler):
...
@@ -46,7 +46,7 @@ class UpscalerRealESRGAN(Upscaler):
scale
=
info
.
scale
,
scale
=
info
.
scale
,
model_path
=
info
.
local_data_path
,
model_path
=
info
.
local_data_path
,
model
=
info
.
model
(),
model
=
info
.
model
(),
half
=
not
cmd_opts
.
no_half
,
half
=
not
cmd_opts
.
no_half
and
not
cmd_opts
.
upcast_sampling
,
tile
=
opts
.
ESRGAN_tile
,
tile
=
opts
.
ESRGAN_tile
,
tile_pad
=
opts
.
ESRGAN_tile_overlap
,
tile_pad
=
opts
.
ESRGAN_tile_overlap
,
)
)
...
...
modules/sd_hijack.py
View file @
fecb990d
...
@@ -173,7 +173,7 @@ class EmbeddingsWithFixes(torch.nn.Module):
...
@@ -173,7 +173,7 @@ class EmbeddingsWithFixes(torch.nn.Module):
vecs
=
[]
vecs
=
[]
for
fixes
,
tensor
in
zip
(
batch_fixes
,
inputs_embeds
):
for
fixes
,
tensor
in
zip
(
batch_fixes
,
inputs_embeds
):
for
offset
,
embedding
in
fixes
:
for
offset
,
embedding
in
fixes
:
emb
=
embedding
.
vec
emb
=
devices
.
cond_cast_unet
(
embedding
.
vec
)
emb_len
=
min
(
tensor
.
shape
[
0
]
-
offset
-
1
,
emb
.
shape
[
0
])
emb_len
=
min
(
tensor
.
shape
[
0
]
-
offset
-
1
,
emb
.
shape
[
0
])
tensor
=
torch
.
cat
([
tensor
[
0
:
offset
+
1
],
emb
[
0
:
emb_len
],
tensor
[
offset
+
1
+
emb_len
:]])
tensor
=
torch
.
cat
([
tensor
[
0
:
offset
+
1
],
emb
[
0
:
emb_len
],
tensor
[
offset
+
1
+
emb_len
:]])
...
...
modules/sd_hijack_unet.py
View file @
fecb990d
...
@@ -55,8 +55,14 @@ class GELUHijack(torch.nn.GELU, torch.nn.Module):
...
@@ -55,8 +55,14 @@ class GELUHijack(torch.nn.GELU, torch.nn.Module):
unet_needs_upcast
=
lambda
*
args
,
**
kwargs
:
devices
.
unet_needs_upcast
unet_needs_upcast
=
lambda
*
args
,
**
kwargs
:
devices
.
unet_needs_upcast
CondFunc
(
'ldm.models.diffusion.ddpm.LatentDiffusion.apply_model'
,
apply_model
,
unet_needs_upcast
)
CondFunc
(
'ldm.models.diffusion.ddpm.LatentDiffusion.apply_model'
,
apply_model
,
unet_needs_upcast
)
CondFunc
(
'ldm.modules.diffusionmodules.openaimodel.timestep_embedding'
,
lambda
orig_func
,
*
args
,
**
kwargs
:
orig_func
(
*
args
,
**
kwargs
)
.
to
(
devices
.
dtype_unet
),
unet_needs_upcast
)
CondFunc
(
'ldm.modules.diffusionmodules.openaimodel.timestep_embedding'
,
lambda
orig_func
,
timesteps
,
*
args
,
**
kwargs
:
orig_func
(
timesteps
,
*
args
,
**
kwargs
)
.
to
(
torch
.
float32
if
timesteps
.
dtype
==
torch
.
int64
else
devices
.
dtype_unet
),
unet_needs_upcast
)
if
version
.
parse
(
torch
.
__version__
)
<=
version
.
parse
(
"1.13.1"
):
if
version
.
parse
(
torch
.
__version__
)
<=
version
.
parse
(
"1.13.1"
):
CondFunc
(
'ldm.modules.diffusionmodules.util.GroupNorm32.forward'
,
lambda
orig_func
,
self
,
*
args
,
**
kwargs
:
orig_func
(
self
.
float
(),
*
args
,
**
kwargs
),
unet_needs_upcast
)
CondFunc
(
'ldm.modules.diffusionmodules.util.GroupNorm32.forward'
,
lambda
orig_func
,
self
,
*
args
,
**
kwargs
:
orig_func
(
self
.
float
(),
*
args
,
**
kwargs
),
unet_needs_upcast
)
CondFunc
(
'ldm.modules.attention.GEGLU.forward'
,
lambda
orig_func
,
self
,
x
:
orig_func
(
self
.
float
(),
x
.
float
())
.
to
(
devices
.
dtype_unet
),
unet_needs_upcast
)
CondFunc
(
'ldm.modules.attention.GEGLU.forward'
,
lambda
orig_func
,
self
,
x
:
orig_func
(
self
.
float
(),
x
.
float
())
.
to
(
devices
.
dtype_unet
),
unet_needs_upcast
)
CondFunc
(
'open_clip.transformer.ResidualAttentionBlock.__init__'
,
lambda
orig_func
,
*
args
,
**
kwargs
:
kwargs
.
update
({
'act_layer'
:
GELUHijack
})
and
False
or
orig_func
(
*
args
,
**
kwargs
),
lambda
_
,
*
args
,
**
kwargs
:
kwargs
.
get
(
'act_layer'
)
is
None
or
kwargs
[
'act_layer'
]
==
torch
.
nn
.
GELU
)
CondFunc
(
'open_clip.transformer.ResidualAttentionBlock.__init__'
,
lambda
orig_func
,
*
args
,
**
kwargs
:
kwargs
.
update
({
'act_layer'
:
GELUHijack
})
and
False
or
orig_func
(
*
args
,
**
kwargs
),
lambda
_
,
*
args
,
**
kwargs
:
kwargs
.
get
(
'act_layer'
)
is
None
or
kwargs
[
'act_layer'
]
==
torch
.
nn
.
GELU
)
first_stage_cond
=
lambda
_
,
self
,
*
args
,
**
kwargs
:
devices
.
unet_needs_upcast
and
self
.
model
.
diffusion_model
.
dtype
==
torch
.
float16
first_stage_sub
=
lambda
orig_func
,
self
,
x
,
**
kwargs
:
orig_func
(
self
,
x
.
to
(
devices
.
dtype_vae
),
**
kwargs
)
CondFunc
(
'ldm.models.diffusion.ddpm.LatentDiffusion.decode_first_stage'
,
first_stage_sub
,
first_stage_cond
)
CondFunc
(
'ldm.models.diffusion.ddpm.LatentDiffusion.encode_first_stage'
,
first_stage_sub
,
first_stage_cond
)
CondFunc
(
'ldm.models.diffusion.ddpm.LatentDiffusion.get_first_stage_encoding'
,
lambda
orig_func
,
*
args
,
**
kwargs
:
orig_func
(
*
args
,
**
kwargs
)
.
float
(),
first_stage_cond
)
webui-macos-env.sh
View file @
fecb990d
...
@@ -10,7 +10,7 @@ then
...
@@ -10,7 +10,7 @@ then
fi
fi
export
install_dir
=
"
$HOME
"
export
install_dir
=
"
$HOME
"
export
COMMANDLINE_ARGS
=
"--skip-torch-cuda-test --upcast-sampling --use-cpu interrogate"
export
COMMANDLINE_ARGS
=
"--skip-torch-cuda-test --upcast-sampling --
no-half-vae --
use-cpu interrogate"
export
TORCH_COMMAND
=
"pip install torch==1.12.1 torchvision==0.13.1"
export
TORCH_COMMAND
=
"pip install torch==1.12.1 torchvision==0.13.1"
export
K_DIFFUSION_REPO
=
"https://github.com/brkirch/k-diffusion.git"
export
K_DIFFUSION_REPO
=
"https://github.com/brkirch/k-diffusion.git"
export
K_DIFFUSION_COMMIT_HASH
=
"51c9778f269cedb55a4d88c79c0246d35bdadb71"
export
K_DIFFUSION_COMMIT_HASH
=
"51c9778f269cedb55a4d88c79c0246d35bdadb71"
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment