Commit f17c8c2e authored by w-e-w's avatar w-e-w Committed by GitHub

Merge branch 'dev' into auro-autolaunch

parents c75bda86 01997f45
......@@ -87,5 +87,9 @@ module.exports = {
modalNextImage: "readonly",
// token-counters.js
setupTokenCounters: "readonly",
// localStorage.js
localSet: "readonly",
localGet: "readonly",
localRemove: "readonly"
}
};
......@@ -115,7 +115,7 @@ Alternatively, use online services (like Google Colab):
1. Install the dependencies:
```bash
# Debian-based:
sudo apt install wget git python3 python3-venv
sudo apt install wget git python3 python3-venv libgl1 libglib2.0-0
# Red Hat-based:
sudo dnf install wget git python3
# Arch-based:
......@@ -123,7 +123,7 @@ sudo pacman -S wget git python3
```
2. Navigate to the directory you would like the webui to be installed and execute the following command:
```bash
bash <(wget -qO- https://raw.githubusercontent.com/AUTOMATIC1111/stable-diffusion-webui/master/webui.sh)
wget -q https://raw.githubusercontent.com/AUTOMATIC1111/stable-diffusion-webui/master/webui.sh
```
3. Run `webui.sh`.
4. Check `webui-user.sh` for options.
......
......@@ -167,7 +167,7 @@ class LoraUserMetadataEditor(ui_extra_networks_user_metadata.UserMetadataEditor)
random_prompt = gr.Textbox(label='Random prompt', lines=4, max_lines=4, interactive=False)
with gr.Column(scale=1, min_width=120):
generate_random_prompt = gr.Button('Generate').style(full_width=True, size="lg")
generate_random_prompt = gr.Button('Generate', size="lg", scale=1)
self.edit_notes = gr.TextArea(label='Notes', lines=4)
......
import math
import gradio as gr
from modules import scripts, shared, ui_components, ui_settings
from modules import scripts, shared, ui_components, ui_settings, generation_parameters_copypaste
from modules.ui_components import FormColumn
......@@ -19,18 +21,37 @@ class ExtraOptionsSection(scripts.Script):
def ui(self, is_img2img):
self.comps = []
self.setting_names = []
self.infotext_fields = []
mapping = {k: v for v, k in generation_parameters_copypaste.infotext_to_setting_name_mapping}
with gr.Blocks() as interface:
with gr.Accordion("Options", open=False) if shared.opts.extra_options_accordion and shared.opts.extra_options else gr.Group(), gr.Row():
for setting_name in shared.opts.extra_options:
with FormColumn():
comp = ui_settings.create_setting_component(setting_name)
with gr.Accordion("Options", open=False) if shared.opts.extra_options_accordion and shared.opts.extra_options else gr.Group():
row_count = math.ceil(len(shared.opts.extra_options) / shared.opts.extra_options_cols)
for row in range(row_count):
with gr.Row():
for col in range(shared.opts.extra_options_cols):
index = row * shared.opts.extra_options_cols + col
if index >= len(shared.opts.extra_options):
break
setting_name = shared.opts.extra_options[index]
self.comps.append(comp)
self.setting_names.append(setting_name)
with FormColumn():
comp = ui_settings.create_setting_component(setting_name)
self.comps.append(comp)
self.setting_names.append(setting_name)
setting_infotext_name = mapping.get(setting_name)
if setting_infotext_name is not None:
self.infotext_fields.append((comp, setting_infotext_name))
def get_settings_values():
return [ui_settings.get_value_for_setting(key) for key in self.setting_names]
res = [ui_settings.get_value_for_setting(key) for key in self.setting_names]
return res[0] if len(res) == 1 else res
interface.load(fn=get_settings_values, inputs=[], outputs=self.comps, queue=False, show_progress=False)
......@@ -43,6 +64,9 @@ class ExtraOptionsSection(scripts.Script):
shared.options_templates.update(shared.options_section(('ui', "User interface"), {
"extra_options": shared.OptionInfo([], "Options in main UI", ui_components.DropdownMulti, lambda: {"choices": list(shared.opts.data_labels.keys())}).js("info", "settingsHintsShowQuicksettings").info("setting entries that also appear in txt2img/img2img interfaces").needs_restart(),
"extra_options_accordion": shared.OptionInfo(False, "Place options in main UI into an accordion")
"extra_options": shared.OptionInfo([], "Options in main UI", ui_components.DropdownMulti, lambda: {"choices": list(shared.opts.data_labels.keys())}).js("info", "settingsHintsShowQuicksettings").info("setting entries that also appear in txt2img/img2img interfaces").needs_reload_ui(),
"extra_options_cols": shared.OptionInfo(1, "Options in main UI - number of columns", gr.Number, {"precision": 0}).needs_reload_ui(),
"extra_options_accordion": shared.OptionInfo(False, "Options in main UI - place into an accordion").needs_reload_ui()
}))
function toggleCss(key, css, enable) {
var style = document.getElementById(key);
if (enable && !style) {
style = document.createElement('style');
style.id = key;
style.type = 'text/css';
document.head.appendChild(style);
}
if (style && !enable) {
document.head.removeChild(style);
}
if (style) {
style.innerHTML == '';
style.appendChild(document.createTextNode(css));
}
}
function setupExtraNetworksForTab(tabname) {
gradioApp().querySelector('#' + tabname + '_extra_tabs').classList.add('extra-networks');
var tabs = gradioApp().querySelector('#' + tabname + '_extra_tabs > div');
var search = gradioApp().querySelector('#' + tabname + '_extra_search textarea');
var searchDiv = gradioApp().getElementById(tabname + '_extra_search');
var search = searchDiv.querySelector('textarea');
var sort = gradioApp().getElementById(tabname + '_extra_sort');
var sortOrder = gradioApp().getElementById(tabname + '_extra_sortorder');
var refresh = gradioApp().getElementById(tabname + '_extra_refresh');
var showDirsDiv = gradioApp().getElementById(tabname + '_extra_show_dirs');
var showDirs = gradioApp().querySelector('#' + tabname + '_extra_show_dirs input');
search.classList.add('search');
sort.classList.add('sort');
sortOrder.classList.add('sortorder');
sort.dataset.sortkey = 'sortDefault';
tabs.appendChild(search);
tabs.appendChild(searchDiv);
tabs.appendChild(sort);
tabs.appendChild(sortOrder);
tabs.appendChild(refresh);
tabs.appendChild(showDirsDiv);
var applyFilter = function() {
var searchTerm = search.value.toLowerCase();
......@@ -80,6 +98,15 @@ function setupExtraNetworksForTab(tabname) {
});
extraNetworksApplyFilter[tabname] = applyFilter;
var showDirsUpdate = function() {
var css = '#' + tabname + '_extra_tabs .extra-network-subdirs { display: none; }';
toggleCss(tabname + '_extra_show_dirs_style', css, !showDirs.checked);
localSet('extra-networks-show-dirs', showDirs.checked ? 1 : 0);
};
showDirs.checked = localGet('extra-networks-show-dirs', 1) == 1;
showDirs.addEventListener("change", showDirsUpdate);
showDirsUpdate();
}
function applyExtraNetworkFilter(tabname) {
......@@ -179,7 +206,7 @@ function saveCardPreview(event, tabname, filename) {
}
function extraNetworksSearchButton(tabs_id, event) {
var searchTextarea = gradioApp().querySelector("#" + tabs_id + ' > div > textarea');
var searchTextarea = gradioApp().querySelector("#" + tabs_id + ' > label > textarea');
var button = event.target;
var text = button.classList.contains("search-all") ? "" : button.textContent.trim();
......
......@@ -136,6 +136,11 @@ function setupImageForLightbox(e) {
var event = isFirefox ? 'mousedown' : 'click';
e.addEventListener(event, function(evt) {
if (evt.button == 1) {
open(evt.target.src);
evt.preventDefault();
return;
}
if (!opts.js_modal_lightbox || evt.button != 0) return;
modalZoomSet(gradioApp().getElementById('modalImage'), opts.js_modal_lightbox_initially_zoomed);
......
function localSet(k, v) {
try {
localStorage.setItem(k, v);
} catch (e) {
console.warn(`Failed to save ${k} to localStorage: ${e}`);
}
}
function localGet(k, def) {
try {
return localStorage.getItem(k);
} catch (e) {
console.warn(`Failed to load ${k} from localStorage: ${e}`);
}
return def;
}
function localRemove(k) {
try {
return localStorage.removeItem(k);
} catch (e) {
console.warn(`Failed to remove ${k} from localStorage: ${e}`);
}
}
......@@ -11,11 +11,11 @@ var ignore_ids_for_localization = {
train_hypernetwork: 'OPTION',
txt2img_styles: 'OPTION',
img2img_styles: 'OPTION',
setting_random_artist_categories: 'SPAN',
setting_face_restoration_model: 'SPAN',
setting_realesrgan_enabled_models: 'SPAN',
extras_upscaler_1: 'SPAN',
extras_upscaler_2: 'SPAN',
setting_random_artist_categories: 'OPTION',
setting_face_restoration_model: 'OPTION',
setting_realesrgan_enabled_models: 'OPTION',
extras_upscaler_1: 'OPTION',
extras_upscaler_2: 'OPTION',
};
var re_num = /^[.\d]+$/;
......
......@@ -152,15 +152,11 @@ function submit() {
showSubmitButtons('txt2img', false);
var id = randomId();
try {
localStorage.setItem("txt2img_task_id", id);
} catch (e) {
console.warn(`Failed to save txt2img task id to localStorage: ${e}`);
}
localSet("txt2img_task_id", id);
requestProgress(id, gradioApp().getElementById('txt2img_gallery_container'), gradioApp().getElementById('txt2img_gallery'), function() {
showSubmitButtons('txt2img', true);
localStorage.removeItem("txt2img_task_id");
localRemove("txt2img_task_id");
showRestoreProgressButton('txt2img', false);
});
......@@ -175,15 +171,11 @@ function submit_img2img() {
showSubmitButtons('img2img', false);
var id = randomId();
try {
localStorage.setItem("img2img_task_id", id);
} catch (e) {
console.warn(`Failed to save img2img task id to localStorage: ${e}`);
}
localSet("img2img_task_id", id);
requestProgress(id, gradioApp().getElementById('img2img_gallery_container'), gradioApp().getElementById('img2img_gallery'), function() {
showSubmitButtons('img2img', true);
localStorage.removeItem("img2img_task_id");
localRemove("img2img_task_id");
showRestoreProgressButton('img2img', false);
});
......@@ -197,7 +189,7 @@ function submit_img2img() {
function restoreProgressTxt2img() {
showRestoreProgressButton("txt2img", false);
var id = localStorage.getItem("txt2img_task_id");
var id = localGet("txt2img_task_id");
if (id) {
requestProgress(id, gradioApp().getElementById('txt2img_gallery_container'), gradioApp().getElementById('txt2img_gallery'), function() {
......@@ -211,7 +203,7 @@ function restoreProgressTxt2img() {
function restoreProgressImg2img() {
showRestoreProgressButton("img2img", false);
var id = localStorage.getItem("img2img_task_id");
var id = localGet("img2img_task_id");
if (id) {
requestProgress(id, gradioApp().getElementById('img2img_gallery_container'), gradioApp().getElementById('img2img_gallery'), function() {
......@@ -224,8 +216,8 @@ function restoreProgressImg2img() {
onUiLoaded(function() {
showRestoreProgressButton('txt2img', localStorage.getItem("txt2img_task_id"));
showRestoreProgressButton('img2img', localStorage.getItem("img2img_task_id"));
showRestoreProgressButton('txt2img', localGet("txt2img_task_id"));
showRestoreProgressButton('img2img', localGet("img2img_task_id"));
});
......
......@@ -112,3 +112,5 @@ parser.add_argument('--subpath', type=str, help='customize the subpath for gradi
parser.add_argument('--add-stop-route', action='store_true', help='add /_stop route to stop server')
parser.add_argument('--api-server-stop', action='store_true', help='enable server stop/restart/kill via api')
parser.add_argument('--timeout-keep-alive', type=int, default=30, help='set timeout_keep_alive for uvicorn')
parser.add_argument("--disable-all-extensions", action='store_true', help="prevent all extensions from running regardless of any other settings", default=False)
parser.add_argument("--disable-extra-extensions", action='store_true', help=" prevent all extensions except built-in from running regardless of any other settings", default=False)
......@@ -3,7 +3,7 @@ import contextlib
from functools import lru_cache
import torch
from modules import errors
from modules import errors, rng_philox
if sys.platform == "darwin":
from modules import mac_specific
......@@ -71,14 +71,17 @@ def enable_tf32():
torch.backends.cudnn.allow_tf32 = True
errors.run(enable_tf32, "Enabling TF32")
cpu = torch.device("cpu")
device = device_interrogate = device_gfpgan = device_esrgan = device_codeformer = None
dtype = torch.float16
dtype_vae = torch.float16
dtype_unet = torch.float16
cpu: torch.device = torch.device("cpu")
device: torch.device = None
device_interrogate: torch.device = None
device_gfpgan: torch.device = None
device_esrgan: torch.device = None
device_codeformer: torch.device = None
dtype: torch.dtype = torch.float16
dtype_vae: torch.dtype = torch.float16
dtype_unet: torch.dtype = torch.float16
unet_needs_upcast = False
......@@ -90,23 +93,87 @@ def cond_cast_float(input):
return input.float() if unet_needs_upcast else input
nv_rng = None
def randn(seed, shape):
"""Generate a tensor with random numbers from a normal distribution using seed.
Uses the seed parameter to set the global torch seed; to generate more with that seed, use randn_like/randn_without_seed."""
from modules.shared import opts
torch.manual_seed(seed)
manual_seed(seed)
if opts.randn_source == "NV":
return torch.asarray(nv_rng.randn(shape), device=device)
if opts.randn_source == "CPU" or device.type == 'mps':
return torch.randn(shape, device=cpu).to(device)
return torch.randn(shape, device=device)
def randn_local(seed, shape):
"""Generate a tensor with random numbers from a normal distribution using seed.
Does not change the global random number generator. You can only generate the seed's first tensor using this function."""
from modules.shared import opts
if opts.randn_source == "NV":
rng = rng_philox.Generator(seed)
return torch.asarray(rng.randn(shape), device=device)
local_device = cpu if opts.randn_source == "CPU" or device.type == 'mps' else device
local_generator = torch.Generator(local_device).manual_seed(int(seed))
return torch.randn(shape, device=local_device, generator=local_generator).to(device)
def randn_like(x):
"""Generate a tensor with random numbers from a normal distribution using the previously initialized genrator.
Use either randn() or manual_seed() to initialize the generator."""
from modules.shared import opts
if opts.randn_source == "NV":
return torch.asarray(nv_rng.randn(x.shape), device=x.device, dtype=x.dtype)
if opts.randn_source == "CPU" or x.device.type == 'mps':
return torch.randn_like(x, device=cpu).to(x.device)
return torch.randn_like(x)
def randn_without_seed(shape):
"""Generate a tensor with random numbers from a normal distribution using the previously initialized genrator.
Use either randn() or manual_seed() to initialize the generator."""
from modules.shared import opts
if opts.randn_source == "NV":
return torch.asarray(nv_rng.randn(shape), device=device)
if opts.randn_source == "CPU" or device.type == 'mps':
return torch.randn(shape, device=cpu).to(device)
return torch.randn(shape, device=device)
def manual_seed(seed):
"""Set up a global random number generator using the specified seed."""
from modules.shared import opts
if opts.randn_source == "NV":
global nv_rng
nv_rng = rng_philox.Generator(seed)
return
torch.manual_seed(seed)
def autocast(disable=False):
from modules import shared
......
......@@ -84,3 +84,53 @@ def run(code, task):
code()
except Exception as e:
display(task, e)
def check_versions():
from packaging import version
from modules import shared
import torch
import gradio
expected_torch_version = "2.0.0"
expected_xformers_version = "0.0.20"
expected_gradio_version = "3.39.0"
if version.parse(torch.__version__) < version.parse(expected_torch_version):
print_error_explanation(f"""
You are running torch {torch.__version__}.
The program is tested to work with torch {expected_torch_version}.
To reinstall the desired version, run with commandline flag --reinstall-torch.
Beware that this will cause a lot of large files to be downloaded, as well as
there are reports of issues with training tab on the latest version.
Use --skip-version-check commandline argument to disable this check.
""".strip())
if shared.xformers_available:
import xformers
if version.parse(xformers.__version__) < version.parse(expected_xformers_version):
print_error_explanation(f"""
You are running xformers {xformers.__version__}.
The program is tested to work with xformers {expected_xformers_version}.
To reinstall the desired version, run with commandline flag --reinstall-xformers.
Use --skip-version-check commandline argument to disable this check.
""".strip())
if gradio.__version__ != expected_gradio_version:
print_error_explanation(f"""
You are running gradio {gradio.__version__}.
The program is designed to work with gradio {expected_gradio_version}.
Using a different version of gradio is extremely likely to break the program.
Reasons why you have the mismatched gradio version can be:
- you use --skip-install flag.
- you use webui.py to start the program instead of launch.py.
- an extension installs the incompatible gradio version.
Use --skip-version-check commandline argument to disable this check.
""".strip())
......@@ -11,9 +11,9 @@ os.makedirs(extensions_dir, exist_ok=True)
def active():
if shared.opts.disable_all_extensions == "all":
if shared.cmd_opts.disable_all_extensions or shared.opts.disable_all_extensions == "all":
return []
elif shared.opts.disable_all_extensions == "extra":
elif shared.cmd_opts.disable_extra_extensions or shared.opts.disable_all_extensions == "extra":
return [x for x in extensions if x.enabled and x.is_builtin]
else:
return [x for x in extensions if x.enabled]
......@@ -141,8 +141,12 @@ def list_extensions():
if not os.path.isdir(extensions_dir):
return
if shared.opts.disable_all_extensions == "all":
if shared.cmd_opts.disable_all_extensions:
print("*** \"--disable-all-extensions\" arg was used, will not load any extensions ***")
elif shared.opts.disable_all_extensions == "all":
print("*** \"Disable all extensions\" option was set, will not load any extensions ***")
elif shared.cmd_opts.disable_extra_extensions:
print("*** \"--disable-extra-extensions\" arg was used, will only load built-in extensions ***")
elif shared.opts.disable_all_extensions == "extra":
print("*** \"Disable all extensions\" option was set, will only load built-in extensions ***")
......
import json
import os
import re
from collections import defaultdict
......@@ -177,3 +179,20 @@ def parse_prompts(prompts):
return res, extra_data
def get_user_metadata(filename):
if filename is None:
return {}
basename, ext = os.path.splitext(filename)
metadata_filename = basename + '.json'
metadata = {}
try:
if os.path.isfile(metadata_filename):
with open(metadata_filename, "r", encoding="utf8") as file:
metadata = json.load(file)
except Exception as e:
errors.display(e, f"reading extra network user metadata from {metadata_filename}")
return metadata
......@@ -280,6 +280,9 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model
if "Hires sampler" not in res:
res["Hires sampler"] = "Use same sampler"
if "Hires checkpoint" not in res:
res["Hires checkpoint"] = "Use same checkpoint"
if "Hires prompt" not in res:
res["Hires prompt"] = ""
......@@ -304,6 +307,12 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model
if "Schedule rho" not in res:
res["Schedule rho"] = 0
if "VAE Encoder" not in res:
res["VAE Encoder"] = "Full"
if "VAE Decoder" not in res:
res["VAE Decoder"] = "Full"
return res
......@@ -319,6 +328,10 @@ infotext_to_setting_name_mapping = [
('Noise multiplier', 'initial_noise_multiplier'),
('Eta', 'eta_ancestral'),
('Eta DDIM', 'eta_ddim'),
('Sigma churn', 's_churn'),
('Sigma tmin', 's_tmin'),
('Sigma tmax', 's_tmax'),
('Sigma noise', 's_noise'),
('Discard penultimate sigma', 'always_discard_next_to_last_sigma'),
('UniPC variant', 'uni_pc_variant'),
('UniPC skip type', 'uni_pc_skip_type'),
......@@ -329,6 +342,8 @@ infotext_to_setting_name_mapping = [
('RNG', 'randn_source'),
('NGMS', 's_min_uncond'),
('Pad conds', 'pad_cond_uncond'),
('VAE Encoder', 'sd_vae_encode_method'),
('VAE Decoder', 'sd_vae_decode_method'),
]
......@@ -399,10 +414,15 @@ def connect_paste(button, paste_fields, input_comp, override_settings_component,
return res
if override_settings_component is not None:
already_handled_fields = {key: 1 for _, key in paste_fields}
def paste_settings(params):
vals = {}
for param_name, setting_name in infotext_to_setting_name_mapping:
if param_name in already_handled_fields:
continue
v = params.get(param_name, None)
if v is None:
continue
......
import gradio as gr
from modules import scripts
def add_classes_to_gradio_component(comp):
"""
this adds gradio-* to the component for css styling (ie gradio-button to gr.Button), as well as some others
"""
comp.elem_classes = [f"gradio-{comp.get_block_name()}", *(comp.elem_classes or [])]
if getattr(comp, 'multiselect', False):
comp.elem_classes.append('multiselect')
def IOComponent_init(self, *args, **kwargs):
self.webui_tooltip = kwargs.pop('tooltip', None)
if scripts.scripts_current is not None:
scripts.scripts_current.before_component(self, **kwargs)
scripts.script_callbacks.before_component_callback(self, **kwargs)
res = original_IOComponent_init(self, *args, **kwargs)
add_classes_to_gradio_component(self)
scripts.script_callbacks.after_component_callback(self, **kwargs)
if scripts.scripts_current is not None:
scripts.scripts_current.after_component(self, **kwargs)
return res
def Block_get_config(self):
config = original_Block_get_config(self)
webui_tooltip = getattr(self, 'webui_tooltip', None)
if webui_tooltip:
config["webui_tooltip"] = webui_tooltip
return config
def BlockContext_init(self, *args, **kwargs):
res = original_BlockContext_init(self, *args, **kwargs)
add_classes_to_gradio_component(self)
return res
original_IOComponent_init = gr.components.IOComponent.__init__
original_Block_get_config = gr.blocks.Block.get_config
original_BlockContext_init = gr.blocks.BlockContext.__init__
gr.components.IOComponent.__init__ = IOComponent_init
gr.blocks.Block.get_config = Block_get_config
gr.blocks.BlockContext.__init__ = BlockContext_init
......@@ -10,7 +10,7 @@ import torch
import tqdm
from einops import rearrange, repeat
from ldm.util import default
from modules import devices, processing, sd_models, shared, sd_samplers, hashes, sd_hijack_checkpoint, errors
from modules import devices, sd_models, shared, sd_samplers, hashes, sd_hijack_checkpoint, errors
from modules.textual_inversion import textual_inversion, logging
from modules.textual_inversion.learn_schedule import LearnRateScheduler
from torch import einsum
......@@ -469,8 +469,7 @@ def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None,
def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, varsize, steps, clip_grad_mode, clip_grad_value, shuffle_tags, tag_drop_out, latent_sampling_method, use_weight, create_image_every, save_hypernetwork_every, template_filename, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
# images allows training previews to have infotext. Importing it at the top causes a circular import problem.
from modules import images
from modules import images, processing
save_hypernetwork_every = save_hypernetwork_every or 0
create_image_every = create_image_every or 0
......
......@@ -318,7 +318,7 @@ def resize_image(resize_mode, im, width, height, upscaler_name=None):
return res
invalid_filename_chars = '<>:"/\\|?*\n'
invalid_filename_chars = '<>:"/\\|?*\n\r\t'
invalid_filename_prefix = ' '
invalid_filename_postfix = ' .'
re_nonletters = re.compile(r'[\s' + string.punctuation + ']+')
......
......@@ -3,7 +3,7 @@ from contextlib import closing
from pathlib import Path
import numpy as np
from PIL import Image, ImageOps, ImageFilter, ImageEnhance, ImageChops, UnidentifiedImageError
from PIL import Image, ImageOps, ImageFilter, ImageEnhance, UnidentifiedImageError
import gradio as gr
from modules import sd_samplers, images as imgutil
......@@ -129,9 +129,7 @@ def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_s
mask = None
elif mode == 2: # inpaint
image, mask = init_img_with_mask["image"], init_img_with_mask["mask"]
alpha_mask = ImageOps.invert(image.split()[-1]).convert('L').point(lambda x: 255 if x > 0 else 0, mode='1')
mask = mask.convert('L').point(lambda x: 255 if x > 128 else 0, mode='1')
mask = ImageChops.lighter(alpha_mask, mask).convert('L')
mask = mask.split()[-1].convert("L").point(lambda x: 255 if x > 128 else 0)
image = image.convert("RGB")
elif mode == 3: # inpaint sketch
image = inpaint_color_sketch
......
......@@ -139,6 +139,27 @@ def check_run_python(code: str) -> bool:
return result.returncode == 0
def git_fix_workspace(dir, name):
run(f'"{git}" -C "{dir}" fetch --refetch --no-auto-gc', f"Fetching all contents for {name}", f"Couldn't fetch {name}", live=True)
run(f'"{git}" -C "{dir}" gc --aggressive --prune=now', f"Pruning {name}", f"Couldn't prune {name}", live=True)
return
def run_git(dir, name, command, desc=None, errdesc=None, custom_env=None, live: bool = default_command_live, autofix=True):
try:
return run(f'"{git}" -C "{dir}" {command}', desc=desc, errdesc=errdesc, custom_env=custom_env, live=live)
except RuntimeError:
pass
if not autofix:
return None
print(f"{errdesc}, attempting autofix...")
git_fix_workspace(dir, name)
return run(f'"{git}" -C "{dir}" {command}', desc=desc, errdesc=errdesc, custom_env=custom_env, live=live)
def git_clone(url, dir, name, commithash=None):
# TODO clone into temporary dir and move if successful
......@@ -146,12 +167,14 @@ def git_clone(url, dir, name, commithash=None):
if commithash is None:
return
current_hash = run(f'"{git}" -C "{dir}" rev-parse HEAD', None, f"Couldn't determine {name}'s hash: {commithash}", live=False).strip()
current_hash = run_git(dir, name, 'rev-parse HEAD', None, f"Couldn't determine {name}'s hash: {commithash}", live=False).strip()
if current_hash == commithash:
return
run(f'"{git}" -C "{dir}" fetch', f"Fetching updates for {name}...", f"Couldn't fetch {name}")
run(f'"{git}" -C "{dir}" checkout {commithash}', f"Checking out commit for {name} with hash: {commithash}...", f"Couldn't checkout commit {commithash} for {name}", live=True)
run_git('fetch', f"Fetching updates for {name}...", f"Couldn't fetch {name}")
run_git('checkout', f"Checking out commit for {name} with hash: {commithash}...", f"Couldn't checkout commit {commithash} for {name}", live=True)
return
run(f'"{git}" clone "{url}" "{dir}"', f"Cloning {name} into {dir}...", f"Couldn't clone {name}", live=True)
......
......@@ -15,6 +15,9 @@ def send_everything_to_cpu():
def setup_for_low_vram(sd_model, use_medvram):
if getattr(sd_model, 'lowvram', False):
return
sd_model.lowvram = True
parents = {}
......
This diff is collapsed.
......@@ -20,7 +20,7 @@ prompt: (emphasized | scheduled | alternate | plain | WHITESPACE)*
| "(" prompt ":" prompt ")"
| "[" prompt "]"
scheduled: "[" [prompt ":"] prompt ":" [WHITESPACE] NUMBER [WHITESPACE] "]"
alternate: "[" prompt ("|" prompt)+ "]"
alternate: "[" prompt ("|" [prompt])+ "]"
WHITESPACE: /\s+/
plain: /([^\\\[\]():|]|\\.)+/
%import common.SIGNED_NUMBER -> NUMBER
......@@ -53,6 +53,10 @@ def get_learned_conditioning_prompt_schedules(prompts, steps):
[[3, '((a][:b:c '], [10, '((a][:b:c d']]
>>> g("[a|(b:1.1)]")
[[1, 'a'], [2, '(b:1.1)'], [3, 'a'], [4, '(b:1.1)'], [5, 'a'], [6, '(b:1.1)'], [7, 'a'], [8, '(b:1.1)'], [9, 'a'], [10, '(b:1.1)']]
>>> g("[fe|]male")
[[1, 'female'], [2, 'male'], [3, 'female'], [4, 'male'], [5, 'female'], [6, 'male'], [7, 'female'], [8, 'male'], [9, 'female'], [10, 'male']]
>>> g("[fe|||]male")
[[1, 'female'], [2, 'male'], [3, 'male'], [4, 'male'], [5, 'female'], [6, 'male'], [7, 'male'], [8, 'male'], [9, 'female'], [10, 'male']]
"""
def collect_steps(steps, tree):
......@@ -78,7 +82,8 @@ def get_learned_conditioning_prompt_schedules(prompts, steps):
before, after, _, when, _ = args
yield before or () if step <= when else after
def alternate(self, args):
yield next(args[(step - 1)%len(args)])
args = ["" if not arg else arg for arg in args]
yield args[(step - 1) % len(args)]
def start(self, args):
def flatten(x):
if type(x) == str:
......
"""RNG imitiating torch cuda randn on CPU. You are welcome.
Usage:
```
g = Generator(seed=0)
print(g.randn(shape=(3, 4)))
```
Expected output:
```
[[-0.92466259 -0.42534415 -2.6438457 0.14518388]
[-0.12086647 -0.57972564 -0.62285122 -0.32838709]
[-1.07454231 -0.36314407 -1.67105067 2.26550497]]
```
"""
import numpy as np
philox_m = [0xD2511F53, 0xCD9E8D57]
philox_w = [0x9E3779B9, 0xBB67AE85]
two_pow32_inv = np.array([2.3283064e-10], dtype=np.float32)
two_pow32_inv_2pi = np.array([2.3283064e-10 * 6.2831855], dtype=np.float32)
def uint32(x):
"""Converts (N,) np.uint64 array into (2, N) np.unit32 array."""
return x.view(np.uint32).reshape(-1, 2).transpose(1, 0)
def philox4_round(counter, key):
"""A single round of the Philox 4x32 random number generator."""
v1 = uint32(counter[0].astype(np.uint64) * philox_m[0])
v2 = uint32(counter[2].astype(np.uint64) * philox_m[1])
counter[0] = v2[1] ^ counter[1] ^ key[0]
counter[1] = v2[0]
counter[2] = v1[1] ^ counter[3] ^ key[1]
counter[3] = v1[0]
def philox4_32(counter, key, rounds=10):
"""Generates 32-bit random numbers using the Philox 4x32 random number generator.
Parameters:
counter (numpy.ndarray): A 4xN array of 32-bit integers representing the counter values (offset into generation).
key (numpy.ndarray): A 2xN array of 32-bit integers representing the key values (seed).
rounds (int): The number of rounds to perform.
Returns:
numpy.ndarray: A 4xN array of 32-bit integers containing the generated random numbers.
"""
for _ in range(rounds - 1):
philox4_round(counter, key)
key[0] = key[0] + philox_w[0]
key[1] = key[1] + philox_w[1]
philox4_round(counter, key)
return counter
def box_muller(x, y):
"""Returns just the first out of two numbers generated by Box–Muller transform algorithm."""
u = x * two_pow32_inv + two_pow32_inv / 2
v = y * two_pow32_inv_2pi + two_pow32_inv_2pi / 2
s = np.sqrt(-2.0 * np.log(u))
r1 = s * np.sin(v)
return r1.astype(np.float32)
class Generator:
"""RNG that produces same outputs as torch.randn(..., device='cuda') on CPU"""
def __init__(self, seed):
self.seed = seed
self.offset = 0
def randn(self, shape):
"""Generate a sequence of n standard normal random variables using the Philox 4x32 random number generator and the Box-Muller transform."""
n = 1
for x in shape:
n *= x
counter = np.zeros((4, n), dtype=np.uint32)
counter[0] = self.offset
counter[2] = np.arange(n, dtype=np.uint32) # up to 2^32 numbers can be generated - if you want more you'd need to spill into counter[3]
self.offset += 1
key = np.empty(n, dtype=np.uint64)
key.fill(self.seed)
key = uint32(key)
g = philox4_32(counter, key)
return box_muller(g[0], g[1]).reshape(shape) # discard g[2] and g[3]
......@@ -631,63 +631,3 @@ def reload_script_body_only():
reload_scripts = load_scripts # compatibility alias
def add_classes_to_gradio_component(comp):
"""
this adds gradio-* to the component for css styling (ie gradio-button to gr.Button), as well as some others
"""
comp.elem_classes = [f"gradio-{comp.get_block_name()}", *(comp.elem_classes or [])]
if getattr(comp, 'multiselect', False):
comp.elem_classes.append('multiselect')
def IOComponent_init(self, *args, **kwargs):
self.webui_tooltip = kwargs.pop('tooltip', None)
if scripts_current is not None:
scripts_current.before_component(self, **kwargs)
script_callbacks.before_component_callback(self, **kwargs)
res = original_IOComponent_init(self, *args, **kwargs)
add_classes_to_gradio_component(self)
script_callbacks.after_component_callback(self, **kwargs)
if scripts_current is not None:
scripts_current.after_component(self, **kwargs)
return res
def Block_get_config(self):
config = original_Block_get_config(self)
webui_tooltip = getattr(self, 'webui_tooltip', None)
if webui_tooltip:
config["webui_tooltip"] = webui_tooltip
return config
original_IOComponent_init = gr.components.IOComponent.__init__
original_Block_get_config = gr.components.Block.get_config
gr.components.IOComponent.__init__ = IOComponent_init
gr.components.Block.get_config = Block_get_config
def BlockContext_init(self, *args, **kwargs):
res = original_BlockContext_init(self, *args, **kwargs)
add_classes_to_gradio_component(self)
return res
original_BlockContext_init = gr.blocks.BlockContext.__init__
gr.blocks.BlockContext.__init__ = BlockContext_init
......@@ -2,11 +2,10 @@ import torch
from torch.nn.functional import silu
from types import MethodType
import modules.textual_inversion.textual_inversion
from modules import devices, sd_hijack_optimizations, shared, script_callbacks, errors, sd_unet
from modules.hypernetworks import hypernetwork
from modules.shared import cmd_opts
from modules import sd_hijack_clip, sd_hijack_open_clip, sd_hijack_unet, sd_hijack_xlmr, xlmr
from modules import sd_hijack_clip, sd_hijack_open_clip, sd_hijack_unet, sd_hijack_xlmr, xlmr, sd_hijack_inpainting
import ldm.modules.attention
import ldm.modules.diffusionmodules.model
......@@ -30,8 +29,12 @@ ldm.modules.attention.MemoryEfficientCrossAttention = ldm.modules.attention.Cros
ldm.modules.attention.BasicTransformerBlock.ATTENTION_MODES["softmax-xformers"] = ldm.modules.attention.CrossAttention
# silence new console spam from SD2
ldm.modules.attention.print = lambda *args: None
ldm.modules.diffusionmodules.model.print = lambda *args: None
ldm.modules.attention.print = shared.ldm_print
ldm.modules.diffusionmodules.model.print = shared.ldm_print
ldm.util.print = shared.ldm_print
ldm.models.diffusion.ddpm.print = shared.ldm_print
sd_hijack_inpainting.do_inpainting_hijack()
optimizers = []
current_optimizer: sd_hijack_optimizations.SdOptimization = None
......@@ -164,12 +167,13 @@ class StableDiffusionModelHijack:
clip = None
optimization_method = None
embedding_db = modules.textual_inversion.textual_inversion.EmbeddingDatabase()
def __init__(self):
import modules.textual_inversion.textual_inversion
self.extra_generation_params = {}
self.comments = []
self.embedding_db = modules.textual_inversion.textual_inversion.EmbeddingDatabase()
self.embedding_db.add_embedding_dir(cmd_opts.embeddings_dir)
def apply_optimizations(self, option=None):
......
......@@ -245,6 +245,8 @@ class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module):
hashes.append(f"{name}: {shorthash}")
if hashes:
if self.hijack.extra_generation_params.get("TI hashes"):
hashes.append(self.hijack.extra_generation_params.get("TI hashes"))
self.hijack.extra_generation_params["TI hashes"] = ", ".join(hashes)
if getattr(self.wrapped, 'return_pooled', False):
......
......@@ -92,6 +92,4 @@ def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=F
def do_inpainting_hijack():
# p_sample_plms is needed because PLMS can't work with dicts as conditionings
ldm.models.diffusion.plms.PLMSSampler.p_sample_plms = p_sample_plms
......@@ -256,9 +256,9 @@ def split_cross_attention_forward(self, x, context=None, mask=None, **kwargs):
raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). '
f'Need: {mem_required / 64 / gb:0.1f}GB free, Have:{mem_free_total / gb:0.1f}GB free')
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
slice_size = q.shape[1] // steps
for i in range(0, q.shape[1], slice_size):
end = i + slice_size
end = min(i + slice_size, q.shape[1])
s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k)
s2 = s1.softmax(dim=-1, dtype=q.dtype)
......
This diff is collapsed.
......@@ -98,10 +98,10 @@ def extend_sdxl(model):
model.conditioner.wrapped = torch.nn.Module()
sgm.modules.attention.print = lambda *args: None
sgm.modules.diffusionmodules.model.print = lambda *args: None
sgm.modules.diffusionmodules.openaimodel.print = lambda *args: None
sgm.modules.encoders.modules.print = lambda *args: None
sgm.modules.attention.print = shared.ldm_print
sgm.modules.diffusionmodules.model.print = shared.ldm_print
sgm.modules.diffusionmodules.openaimodel.print = shared.ldm_print
sgm.modules.encoders.modules.print = shared.ldm_print
# this gets the code to load the vanilla attention that we override
sgm.modules.attention.SDP_IS_AVAILABLE = True
......
......@@ -2,10 +2,8 @@ from collections import namedtuple
import numpy as np
import torch
from PIL import Image
from modules import devices, processing, images, sd_vae_approx, sd_samplers, sd_vae_taesd
from modules import devices, images, sd_vae_approx, sd_samplers, sd_vae_taesd, shared
from modules.shared import opts, state
import modules.shared as shared
SamplerData = namedtuple('SamplerData', ['name', 'constructor', 'aliases', 'options'])
......@@ -25,19 +23,29 @@ def setup_img2img_steps(p, steps=None):
approximation_indexes = {"Full": 0, "Approx NN": 1, "Approx cheap": 2, "TAESD": 3}
def single_sample_to_image(sample, approximation=None):
def samples_to_images_tensor(sample, approximation=None, model=None):
'''latents -> images [-1, 1]'''
if approximation is None:
approximation = approximation_indexes.get(opts.show_progress_type, 0)
if approximation == 2:
x_sample = sd_vae_approx.cheap_approximation(sample) * 0.5 + 0.5
x_sample = sd_vae_approx.cheap_approximation(sample)
elif approximation == 1:
x_sample = sd_vae_approx.model()(sample.to(devices.device, devices.dtype).unsqueeze(0))[0].detach() * 0.5 + 0.5
x_sample = sd_vae_approx.model()(sample.to(devices.device, devices.dtype)).detach()
elif approximation == 3:
x_sample = sample * 1.5
x_sample = sd_vae_taesd.model()(x_sample.to(devices.device, devices.dtype).unsqueeze(0))[0].detach()
x_sample = sd_vae_taesd.decoder_model()(x_sample.to(devices.device, devices.dtype)).detach()
x_sample = x_sample * 2 - 1
else:
x_sample = processing.decode_first_stage(shared.sd_model, sample.unsqueeze(0))[0] * 0.5 + 0.5
if model is None:
model = shared.sd_model
x_sample = model.decode_first_stage(sample.to(model.first_stage_model.dtype))
return x_sample
def single_sample_to_image(sample, approximation=None):
x_sample = samples_to_images_tensor(sample.unsqueeze(0), approximation)[0] * 0.5 + 0.5
x_sample = torch.clamp(x_sample, min=0.0, max=1.0)
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
......@@ -46,6 +54,12 @@ def single_sample_to_image(sample, approximation=None):
return Image.fromarray(x_sample)
def decode_first_stage(model, x):
x = x.to(devices.dtype_vae)
approx_index = approximation_indexes.get(opts.sd_vae_decode_method, 0)
return samples_to_images_tensor(x, approx_index, model)
def sample_to_image(samples, index=0, approximation=None):
return single_sample_to_image(samples[index], approximation)
......@@ -54,6 +68,24 @@ def samples_to_image_grid(samples, approximation=None):
return images.image_grid([single_sample_to_image(sample, approximation) for sample in samples])
def images_tensor_to_samples(image, approximation=None, model=None):
'''image[0, 1] -> latent'''
if approximation is None:
approximation = approximation_indexes.get(opts.sd_vae_encode_method, 0)
if approximation == 3:
image = image.to(devices.device, devices.dtype)
x_latent = sd_vae_taesd.encoder_model()(image)
else:
if model is None:
model = shared.sd_model
image = image.to(shared.device, dtype=devices.dtype_vae)
image = image * 2 - 1
x_latent = model.get_first_stage_encoding(model.encode_first_stage(image))
return x_latent
def store_latent(decoded):
state.current_latent = decoded
......@@ -85,11 +117,13 @@ class InterruptedException(BaseException):
pass
if opts.randn_source == "CPU":
def replace_torchsde_browinan():
import torchsde._brownian.brownian_interval
def torchsde_randn(size, dtype, device, seed):
generator = torch.Generator(devices.cpu).manual_seed(int(seed))
return torch.randn(size, dtype=dtype, device=devices.cpu, generator=generator).to(device)
return devices.randn_local(seed, size).to(device=device, dtype=dtype)
torchsde._brownian.brownian_interval._randn = torchsde_randn
replace_torchsde_browinan()
......@@ -4,6 +4,7 @@ import inspect
import k_diffusion.sampling
from modules import prompt_parser, devices, sd_samplers_common, sd_samplers_extra
from modules.processing import StableDiffusionProcessing
from modules.shared import opts, state
import modules.shared as shared
from modules.script_callbacks import CFGDenoiserParams, cfg_denoiser_callback
......@@ -30,6 +31,7 @@ samplers_k_diffusion = [
('DPM++ 2M Karras', 'sample_dpmpp_2m', ['k_dpmpp_2m_ka'], {'scheduler': 'karras'}),
('DPM++ SDE Karras', 'sample_dpmpp_sde', ['k_dpmpp_sde_ka'], {'scheduler': 'karras', "second_order": True, "brownian_noise": True}),
('DPM++ 2M SDE Karras', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_ka'], {'scheduler': 'karras', "brownian_noise": True}),
('DPM++ 2M SDE Exponential', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_exp'], {'scheduler': 'exponential', "brownian_noise": True}),
('Restart', sd_samplers_extra.restart_sampler, ['restart'], {'scheduler': 'karras'}),
]
......@@ -260,10 +262,7 @@ class TorchHijack:
if noise.shape == x.shape:
return noise
if opts.randn_source == "CPU" or x.device.type == 'mps':
return torch.randn_like(x, device=devices.cpu).to(x.device)
else:
return torch.randn_like(x)
return devices.randn_like(x)
class KDiffusionSampler:
......@@ -282,6 +281,14 @@ class KDiffusionSampler:
self.last_latent = None
self.s_min_uncond = None
# NOTE: These are also defined in the StableDiffusionProcessing class.
# They should have been here to begin with but we're going to
# leave that class __init__ signature alone.
self.s_churn = 0.0
self.s_tmin = 0.0
self.s_tmax = float('inf')
self.s_noise = 1.0
self.conditioning_key = sd_model.model.conditioning_key
def callback_state(self, d):
......@@ -316,7 +323,7 @@ class KDiffusionSampler:
def number_of_needed_noises(self, p):
return p.steps
def initialize(self, p):
def initialize(self, p: StableDiffusionProcessing):
self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None
self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None
self.model_wrap_cfg.step = 0
......@@ -337,6 +344,29 @@ class KDiffusionSampler:
extra_params_kwargs['eta'] = self.eta
if len(self.extra_params) > 0:
s_churn = getattr(opts, 's_churn', p.s_churn)
s_tmin = getattr(opts, 's_tmin', p.s_tmin)
s_tmax = getattr(opts, 's_tmax', p.s_tmax) or self.s_tmax # 0 = inf
s_noise = getattr(opts, 's_noise', p.s_noise)
if s_churn != self.s_churn:
extra_params_kwargs['s_churn'] = s_churn
p.s_churn = s_churn
p.extra_generation_params['Sigma churn'] = s_churn
if s_tmin != self.s_tmin:
extra_params_kwargs['s_tmin'] = s_tmin
p.s_tmin = s_tmin
p.extra_generation_params['Sigma tmin'] = s_tmin
if s_tmax != self.s_tmax:
extra_params_kwargs['s_tmax'] = s_tmax
p.s_tmax = s_tmax
p.extra_generation_params['Sigma tmax'] = s_tmax
if s_noise != self.s_noise:
extra_params_kwargs['s_noise'] = s_noise
p.s_noise = s_noise
p.extra_generation_params['Sigma noise'] = s_noise
return extra_params_kwargs
def get_sigmas(self, p, steps):
......@@ -378,6 +408,9 @@ class KDiffusionSampler:
sigma_min, sigma_max = (0.1, 10) if opts.use_old_karras_scheduler_sigmas else (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item())
sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, device=shared.device)
elif self.config is not None and self.config.options.get('scheduler', None) == 'exponential':
m_sigma_min, m_sigma_max = (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item())
sigmas = k_diffusion.sampling.get_sigmas_exponential(n=steps, sigma_min=m_sigma_min, sigma_max=m_sigma_max, device=shared.device)
else:
sigmas = self.model_wrap.get_sigmas(steps)
......
import os
import collections
from modules import paths, shared, devices, script_callbacks, sd_models
from dataclasses import dataclass
from modules import paths, shared, devices, script_callbacks, sd_models, extra_networks
import glob
from copy import deepcopy
......@@ -16,6 +18,7 @@ checkpoint_info = None
checkpoints_loaded = collections.OrderedDict()
def get_base_vae(model):
if base_vae is not None and checkpoint_info == model.sd_checkpoint_info and model:
return base_vae
......@@ -50,6 +53,7 @@ def get_filename(filepath):
def refresh_vae_list():
global vae_dict
vae_dict.clear()
paths = [
......@@ -83,6 +87,8 @@ def refresh_vae_list():
name = get_filename(filepath)
vae_dict[name] = filepath
vae_dict = dict(sorted(vae_dict.items(), key=lambda item: shared.natural_sort_key(item[0])))
def find_vae_near_checkpoint(checkpoint_file):
checkpoint_path = os.path.basename(checkpoint_file).rsplit('.', 1)[0]
......@@ -93,27 +99,74 @@ def find_vae_near_checkpoint(checkpoint_file):
return None
def resolve_vae(checkpoint_file):
if shared.cmd_opts.vae_path is not None:
return shared.cmd_opts.vae_path, 'from commandline argument'
@dataclass
class VaeResolution:
vae: str = None
source: str = None
resolved: bool = True
is_automatic = shared.opts.sd_vae in {"Automatic", "auto"} # "auto" for people with old config
def tuple(self):
return self.vae, self.source
vae_near_checkpoint = find_vae_near_checkpoint(checkpoint_file)
if vae_near_checkpoint is not None and (shared.opts.sd_vae_as_default or is_automatic):
return vae_near_checkpoint, 'found near the checkpoint'
def is_automatic():
return shared.opts.sd_vae in {"Automatic", "auto"} # "auto" for people with old config
def resolve_vae_from_setting() -> VaeResolution:
if shared.opts.sd_vae == "None":
return None, None
return VaeResolution()
vae_from_options = vae_dict.get(shared.opts.sd_vae, None)
if vae_from_options is not None:
return vae_from_options, 'specified in settings'
return VaeResolution(vae_from_options, 'specified in settings')
if not is_automatic:
if not is_automatic():
print(f"Couldn't find VAE named {shared.opts.sd_vae}; using None instead")
return None, None
return VaeResolution(resolved=False)
def resolve_vae_from_user_metadata(checkpoint_file) -> VaeResolution:
metadata = extra_networks.get_user_metadata(checkpoint_file)
vae_metadata = metadata.get("vae", None)
if vae_metadata is not None and vae_metadata != "Automatic":
if vae_metadata == "None":
return VaeResolution()
vae_from_metadata = vae_dict.get(vae_metadata, None)
if vae_from_metadata is not None:
return VaeResolution(vae_from_metadata, "from user metadata")
return VaeResolution(resolved=False)
def resolve_vae_near_checkpoint(checkpoint_file) -> VaeResolution:
vae_near_checkpoint = find_vae_near_checkpoint(checkpoint_file)
if vae_near_checkpoint is not None and (shared.opts.sd_vae_as_default or is_automatic):
return VaeResolution(vae_near_checkpoint, 'found near the checkpoint')
return VaeResolution(resolved=False)
def resolve_vae(checkpoint_file) -> VaeResolution:
if shared.cmd_opts.vae_path is not None:
return VaeResolution(shared.cmd_opts.vae_path, 'from commandline argument')
if shared.opts.sd_vae_overrides_per_model_preferences and not is_automatic():
return resolve_vae_from_setting()
res = resolve_vae_from_user_metadata(checkpoint_file)
if res.resolved:
return res
res = resolve_vae_near_checkpoint(checkpoint_file)
if res.resolved:
return res
res = resolve_vae_from_setting()
return res
def load_vae_dict(filename, map_location):
......@@ -187,7 +240,7 @@ def reload_vae_weights(sd_model=None, vae_file=unspecified):
checkpoint_file = checkpoint_info.filename
if vae_file == unspecified:
vae_file, vae_source = resolve_vae(checkpoint_file)
vae_file, vae_source = resolve_vae(checkpoint_file).tuple()
else:
vae_source = "from function argument"
......
......@@ -81,6 +81,6 @@ def cheap_approximation(sample):
coefs = torch.tensor(coeffs).to(sample.device)
x_sample = torch.einsum("lxy,lr -> rxy", sample, coefs)
x_sample = torch.einsum("...lxy,lr -> ...rxy", sample, coefs)
return x_sample
......@@ -44,7 +44,17 @@ def decoder():
)
class TAESD(nn.Module):
def encoder():
return nn.Sequential(
conv(3, 64), Block(64, 64),
conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64),
conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64),
conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64),
conv(64, 4),
)
class TAESDDecoder(nn.Module):
latent_magnitude = 3
latent_shift = 0.5
......@@ -55,21 +65,28 @@ class TAESD(nn.Module):
self.decoder.load_state_dict(
torch.load(decoder_path, map_location='cpu' if devices.device.type != 'cuda' else None))
@staticmethod
def unscale_latents(x):
"""[0, 1] -> raw latents"""
return x.sub(TAESD.latent_shift).mul(2 * TAESD.latent_magnitude)
class TAESDEncoder(nn.Module):
latent_magnitude = 3
latent_shift = 0.5
def __init__(self, encoder_path="taesd_encoder.pth"):
"""Initialize pretrained TAESD on the given device from the given checkpoints."""
super().__init__()
self.encoder = encoder()
self.encoder.load_state_dict(
torch.load(encoder_path, map_location='cpu' if devices.device.type != 'cuda' else None))
def download_model(model_path, model_url):
if not os.path.exists(model_path):
os.makedirs(os.path.dirname(model_path), exist_ok=True)
print(f'Downloading TAESD decoder to: {model_path}')
print(f'Downloading TAESD model to: {model_path}')
torch.hub.download_url_to_file(model_url, model_path)
def model():
def decoder_model():
model_name = "taesdxl_decoder.pth" if getattr(shared.sd_model, 'is_sdxl', False) else "taesd_decoder.pth"
loaded_model = sd_vae_taesd_models.get(model_name)
......@@ -78,7 +95,7 @@ def model():
download_model(model_path, 'https://github.com/madebyollin/taesd/raw/main/' + model_name)
if os.path.exists(model_path):
loaded_model = TAESD(model_path)
loaded_model = TAESDDecoder(model_path)
loaded_model.eval()
loaded_model.to(devices.device, devices.dtype)
sd_vae_taesd_models[model_name] = loaded_model
......@@ -86,3 +103,22 @@ def model():
raise FileNotFoundError('TAESD model not found')
return loaded_model.decoder
def encoder_model():
model_name = "taesdxl_encoder.pth" if getattr(shared.sd_model, 'is_sdxl', False) else "taesd_encoder.pth"
loaded_model = sd_vae_taesd_models.get(model_name)
if loaded_model is None:
model_path = os.path.join(paths_internal.models_path, "VAE-taesd", model_name)
download_model(model_path, 'https://github.com/madebyollin/taesd/raw/main/' + model_name)
if os.path.exists(model_path):
loaded_model = TAESDEncoder(model_path)
loaded_model.eval()
loaded_model.to(devices.device, devices.dtype)
sd_vae_taesd_models[model_name] = loaded_model
else:
raise FileNotFoundError('TAESD model not found')
return loaded_model.encoder
This diff is collapsed.
......@@ -106,10 +106,7 @@ class StyleDatabase:
if os.path.exists(path):
shutil.copy(path, f"{path}.bak")
fd = os.open(path, os.O_RDWR | os.O_CREAT)
with os.fdopen(fd, "w", encoding="utf-8-sig", newline='') as file:
# _fields is actually part of the public API: typing.NamedTuple is a replacement for collections.NamedTuple,
# and collections.NamedTuple has explicit documentation for accessing _fields. Same goes for _asdict()
with open(path, "w", encoding="utf-8-sig", newline='') as file:
writer = csv.DictWriter(file, fieldnames=PromptStyle._fields)
writer.writeheader()
writer.writerows(style._asdict() for k, style in self.styles.items())
......
......@@ -13,7 +13,7 @@ import numpy as np
from PIL import Image, PngImagePlugin
from torch.utils.tensorboard import SummaryWriter
from modules import shared, devices, sd_hijack, processing, sd_models, images, sd_samplers, sd_hijack_checkpoint, errors, hashes
from modules import shared, devices, sd_hijack, sd_models, images, sd_samplers, sd_hijack_checkpoint, errors, hashes
import modules.textual_inversion.dataset
from modules.textual_inversion.learn_schedule import LearnRateScheduler
......@@ -387,6 +387,8 @@ def validate_train_inputs(model_name, learn_rate, batch_size, gradient_step, dat
def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, varsize, steps, clip_grad_mode, clip_grad_value, shuffle_tags, tag_drop_out, latent_sampling_method, use_weight, create_image_every, save_embedding_every, template_filename, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
from modules import processing
save_embedding_every = save_embedding_every or 0
create_image_every = create_image_every or 0
template_file = textual_inversion_templates.get(template_filename, None)
......
......@@ -9,7 +9,7 @@ from modules.ui import plaintext_to_html
import gradio as gr
def txt2img(id_task: str, prompt: str, negative_prompt: str, prompt_styles, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, hr_scale: float, hr_upscaler: str, hr_second_pass_steps: int, hr_resize_x: int, hr_resize_y: int, hr_sampler_index: int, hr_prompt: str, hr_negative_prompt, override_settings_texts, request: gr.Request, *args):
def txt2img(id_task: str, prompt: str, negative_prompt: str, prompt_styles, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, hr_scale: float, hr_upscaler: str, hr_second_pass_steps: int, hr_resize_x: int, hr_resize_y: int, hr_checkpoint_name: str, hr_sampler_index: int, hr_prompt: str, hr_negative_prompt, override_settings_texts, request: gr.Request, *args):
override_settings = create_override_settings_dict(override_settings_texts)
p = processing.StableDiffusionProcessingTxt2Img(
......@@ -41,6 +41,7 @@ def txt2img(id_task: str, prompt: str, negative_prompt: str, prompt_styles, step
hr_second_pass_steps=hr_second_pass_steps,
hr_resize_x=hr_resize_x,
hr_resize_y=hr_resize_y,
hr_checkpoint_name=None if hr_checkpoint_name == 'Use same checkpoint' else hr_checkpoint_name,
hr_sampler_name=sd_samplers.samplers_for_img2img[hr_sampler_index - 1].name if hr_sampler_index != 0 else None,
hr_prompt=hr_prompt,
hr_negative_prompt=hr_negative_prompt,
......
This diff is collapsed.
......@@ -29,7 +29,7 @@ def modelmerger(*args):
class UiCheckpointMerger:
def __init__(self):
with gr.Blocks(analytics_enabled=False) as modelmerger_interface:
with gr.Row().style(equal_height=False):
with gr.Row(equal_height=False):
with gr.Column(variant='compact'):
self.interp_description = gr.HTML(value=update_interp_description("Weighted sum"), elem_id="modelmerger_interp_description")
......
......@@ -134,7 +134,7 @@ Requested path was: {f}
with gr.Column(variant='panel', elem_id=f"{tabname}_results"):
with gr.Group(elem_id=f"{tabname}_gallery_container"):
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id=f"{tabname}_gallery").style(columns=4)
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id=f"{tabname}_gallery", columns=4)
generation_info = None
with gr.Column():
......@@ -223,20 +223,44 @@ Requested path was: {f}
def create_refresh_button(refresh_component, refresh_method, refreshed_args, elem_id):
refresh_components = refresh_component if isinstance(refresh_component, list) else [refresh_component]
label = None
for comp in refresh_components:
label = getattr(comp, 'label', None)
if label is not None:
break
def refresh():
refresh_method()
args = refreshed_args() if callable(refreshed_args) else refreshed_args
for k, v in args.items():
setattr(refresh_component, k, v)
for comp in refresh_components:
setattr(comp, k, v)
return gr.update(**(args or {}))
return [gr.update(**(args or {})) for _ in refresh_components] if len(refresh_components) > 1 else gr.update(**(args or {}))
refresh_button = ToolButton(value=refresh_symbol, elem_id=elem_id)
refresh_button = ToolButton(value=refresh_symbol, elem_id=elem_id, tooltip=f"{label}: refresh" if label else "Refresh")
refresh_button.click(
fn=refresh,
inputs=[],
outputs=[refresh_component]
outputs=refresh_components
)
return refresh_button
def setup_dialog(button_show, dialog, *, button_close=None):
"""Sets up the UI so that the dialog (gr.Box) is invisible, and is only shown when buttons_show is clicked, in a fullscreen modal window."""
dialog.visible = False
button_show.click(
fn=lambda: gr.update(visible=True),
inputs=[],
outputs=[dialog],
).then(fn=None, _js="function(){ popup(gradioApp().getElementById('" + dialog.elem_id + "')); }")
if button_close:
button_close.click(fn=None, _js="closePopup")
......@@ -35,7 +35,7 @@ class FormColumn(FormComponent, gr.Column):
class FormGroup(FormComponent, gr.Group):
"""Same as gr.Row but fits inside gradio forms"""
"""Same as gr.Group but fits inside gradio forms"""
def get_block_name(self):
return "group"
......
......@@ -164,7 +164,7 @@ def extension_table():
ext_status = ext.status
style = ""
if shared.opts.disable_all_extensions == "extra" and not ext.is_builtin or shared.opts.disable_all_extensions == "all":
if shared.cmd_opts.disable_extra_extensions and not ext.is_builtin or shared.opts.disable_all_extensions == "extra" and not ext.is_builtin or shared.cmd_opts.disable_all_extensions or shared.opts.disable_all_extensions == "all":
style = STYLE_PRIMARY
version_link = ext.version
......@@ -533,16 +533,20 @@ def create_ui():
apply = gr.Button(value=apply_label, variant="primary")
check = gr.Button(value="Check for updates")
extensions_disable_all = gr.Radio(label="Disable all extensions", choices=["none", "extra", "all"], value=shared.opts.disable_all_extensions, elem_id="extensions_disable_all")
extensions_disabled_list = gr.Text(elem_id="extensions_disabled_list", visible=False).style(container=False)
extensions_update_list = gr.Text(elem_id="extensions_update_list", visible=False).style(container=False)
extensions_disabled_list = gr.Text(elem_id="extensions_disabled_list", visible=False, container=False)
extensions_update_list = gr.Text(elem_id="extensions_update_list", visible=False, container=False)
html = ""
if shared.opts.disable_all_extensions != "none":
html = """
<span style="color: var(--primary-400);">
"Disable all extensions" was set, change it to "none" to load all extensions again
</span>
"""
if shared.cmd_opts.disable_all_extensions or shared.cmd_opts.disable_extra_extensions or shared.opts.disable_all_extensions != "none":
if shared.cmd_opts.disable_all_extensions:
msg = '"--disable-all-extensions" was used, remove it to load all extensions again'
elif shared.opts.disable_all_extensions != "none":
msg = '"Disable all extensions" was set, change it to "none" to load all extensions again'
elif shared.cmd_opts.disable_extra_extensions:
msg = '"--disable-extra-extensions" was used, remove it to load all extensions again'
html = f'<span style="color: var(--primary-400);">{msg}</span>'
info = gr.HTML(html)
extensions_table = gr.HTML('Loading...')
ui.load(fn=extension_table, inputs=[], outputs=[extensions_table])
......@@ -565,7 +569,7 @@ def create_ui():
with gr.Row():
refresh_available_extensions_button = gr.Button(value="Load from:", variant="primary")
extensions_index_url = os.environ.get('WEBUI_EXTENSIONS_INDEX', "https://raw.githubusercontent.com/AUTOMATIC1111/stable-diffusion-webui-extensions/master/index.json")
available_extensions_index = gr.Text(value=extensions_index_url, label="Extension index URL").style(container=False)
available_extensions_index = gr.Text(value=extensions_index_url, label="Extension index URL", container=False)
extension_to_install = gr.Text(elem_id="extension_to_install", visible=False)
install_extension_button = gr.Button(elem_id="install_extension_button", visible=False)
......@@ -574,7 +578,7 @@ def create_ui():
sort_column = gr.Radio(value="newest first", label="Order", choices=["newest first", "oldest first", "a-z", "z-a", "internal order",'update time', 'create time', "stars"], type="index")
with gr.Row():
search_extensions_text = gr.Text(label="Search").style(container=False)
search_extensions_text = gr.Text(label="Search", container=False)
install_result = gr.HTML()
available_extensions_table = gr.HTML()
......
......@@ -2,7 +2,7 @@ import os.path
import urllib.parse
from pathlib import Path
from modules import shared, ui_extra_networks_user_metadata, errors
from modules import shared, ui_extra_networks_user_metadata, errors, extra_networks
from modules.images import read_info_from_image, save_image_with_geninfo
from modules.ui import up_down_symbol
import gradio as gr
......@@ -101,16 +101,7 @@ class ExtraNetworksPage:
def read_user_metadata(self, item):
filename = item.get("filename", None)
basename, ext = os.path.splitext(filename)
metadata_filename = basename + '.json'
metadata = {}
try:
if os.path.isfile(metadata_filename):
with open(metadata_filename, "r", encoding="utf8") as file:
metadata = json.load(file)
except Exception as e:
errors.display(e, f"reading extra network user metadata from {metadata_filename}")
metadata = extra_networks.get_user_metadata(filename)
desc = metadata.get("description", None)
if desc is not None:
......@@ -164,7 +155,7 @@ class ExtraNetworksPage:
subdirs = {"": 1, **subdirs}
subdirs_html = "".join([f"""
<button class='lg secondary gradio-button custom-button{" search-all" if subdir=="" else ""}' onclick='extraNetworksSearchButton("{tabname}_extra_tabs", event)'>
<button class='lg secondary gradio-button custom-button{" search-all" if subdir=="" else ""}' onclick='extraNetworksSearchButton("{tabname}_extra_search", event)'>
{html.escape(subdir if subdir!="" else "all")}
</button>
""" for subdir in subdirs])
......@@ -356,7 +347,7 @@ def pages_in_preferred_order(pages):
return sorted(pages, key=lambda x: tab_scores[x.name])
def create_ui(container, button, tabname):
def create_ui(interface: gr.Blocks, unrelated_tabs, tabname):
ui = ExtraNetworksUi()
ui.pages = []
ui.pages_contents = []
......@@ -364,48 +355,42 @@ def create_ui(container, button, tabname):
ui.stored_extra_pages = pages_in_preferred_order(extra_pages.copy())
ui.tabname = tabname
with gr.Tabs(elem_id=tabname+"_extra_tabs"):
for page in ui.stored_extra_pages:
with gr.Tab(page.title, id=page.id_page):
elem_id = f"{tabname}_{page.id_page}_cards_html"
page_elem = gr.HTML('Loading...', elem_id=elem_id)
ui.pages.append(page_elem)
related_tabs = []
for page in ui.stored_extra_pages:
with gr.Tab(page.title, id=page.id_page) as tab:
elem_id = f"{tabname}_{page.id_page}_cards_html"
page_elem = gr.HTML('Loading...', elem_id=elem_id)
ui.pages.append(page_elem)
page_elem.change(fn=lambda: None, _js='function(){applyExtraNetworkFilter(' + quote_js(tabname) + '); return []}', inputs=[], outputs=[])
page_elem.change(fn=lambda: None, _js='function(){applyExtraNetworkFilter(' + quote_js(tabname) + '); return []}', inputs=[], outputs=[])
editor = page.create_user_metadata_editor(ui, tabname)
editor.create_ui()
ui.user_metadata_editors.append(editor)
editor = page.create_user_metadata_editor(ui, tabname)
editor.create_ui()
ui.user_metadata_editors.append(editor)
gr.Textbox('', show_label=False, elem_id=tabname+"_extra_search", placeholder="Search...", visible=False)
gr.Dropdown(choices=['Default Sort', 'Date Created', 'Date Modified', 'Name'], value='Default Sort', elem_id=tabname+"_extra_sort", multiselect=False, visible=False, show_label=False, interactive=True)
ToolButton(up_down_symbol, elem_id=tabname+"_extra_sortorder")
button_refresh = gr.Button('Refresh', elem_id=tabname+"_extra_refresh")
related_tabs.append(tab)
edit_search = gr.Textbox('', show_label=False, elem_id=tabname+"_extra_search", elem_classes="search", placeholder="Search...", visible=False, interactive=True)
dropdown_sort = gr.Dropdown(choices=['Default Sort', 'Date Created', 'Date Modified', 'Name'], value='Default Sort', elem_id=tabname+"_extra_sort", elem_classes="sort", multiselect=False, visible=False, show_label=False, interactive=True, label=tabname+"_extra_sort_order")
button_sortorder = ToolButton(up_down_symbol, elem_id=tabname+"_extra_sortorder", elem_classes="sortorder", visible=False)
button_refresh = gr.Button('Refresh', elem_id=tabname+"_extra_refresh", visible=False)
checkbox_show_dirs = gr.Checkbox(True, label='Show dirs', elem_id=tabname+"_extra_show_dirs", elem_classes="show-dirs", visible=False)
ui.button_save_preview = gr.Button('Save preview', elem_id=tabname+"_save_preview", visible=False)
ui.preview_target_filename = gr.Textbox('Preview save filename', elem_id=tabname+"_preview_filename", visible=False)
def toggle_visibility(is_visible):
is_visible = not is_visible
return is_visible, gr.update(visible=is_visible), gr.update(variant=("secondary-down" if is_visible else "secondary"))
for tab in unrelated_tabs:
tab.select(fn=lambda: [gr.update(visible=False) for _ in range(5)], inputs=[], outputs=[edit_search, dropdown_sort, button_sortorder, button_refresh, checkbox_show_dirs], show_progress=False)
def fill_tabs(is_empty):
"""Creates HTML for extra networks' tabs when the extra networks button is clicked for the first time."""
for tab in related_tabs:
tab.select(fn=lambda: [gr.update(visible=True) for _ in range(5)], inputs=[], outputs=[edit_search, dropdown_sort, button_sortorder, button_refresh, checkbox_show_dirs], show_progress=False)
def pages_html():
if not ui.pages_contents:
refresh()
return refresh()
if is_empty:
return True, *ui.pages_contents
return True, *[gr.update() for _ in ui.pages_contents]
state_visible = gr.State(value=False)
button.click(fn=toggle_visibility, inputs=[state_visible], outputs=[state_visible, container, button], show_progress=False)
state_empty = gr.State(value=True)
button.click(fn=fill_tabs, inputs=[state_empty], outputs=[state_empty, *ui.pages], show_progress=False)
return ui.pages_contents
def refresh():
for pg in ui.stored_extra_pages:
......@@ -415,6 +400,7 @@ def create_ui(container, button, tabname):
return ui.pages_contents
interface.load(fn=pages_html, inputs=[], outputs=[*ui.pages])
button_refresh.click(fn=refresh, inputs=[], outputs=ui.pages)
return ui
......
......@@ -3,6 +3,7 @@ import os
from modules import shared, ui_extra_networks, sd_models
from modules.ui_extra_networks import quote_js
from modules.ui_extra_networks_checkpoints_user_metadata import CheckpointUserMetadataEditor
class ExtraNetworksPageCheckpoints(ui_extra_networks.ExtraNetworksPage):
......@@ -12,7 +13,7 @@ class ExtraNetworksPageCheckpoints(ui_extra_networks.ExtraNetworksPage):
def refresh(self):
shared.refresh_checkpoints()
def create_item(self, name, index=None):
def create_item(self, name, index=None, enable_filter=True):
checkpoint: sd_models.CheckpointInfo = sd_models.checkpoint_aliases.get(name)
path, ext = os.path.splitext(checkpoint.filename)
return {
......@@ -34,3 +35,5 @@ class ExtraNetworksPageCheckpoints(ui_extra_networks.ExtraNetworksPage):
def allowed_directories_for_previews(self):
return [v for v in [shared.cmd_opts.ckpt_dir, sd_models.model_path] if v is not None]
def create_user_metadata_editor(self, ui, tabname):
return CheckpointUserMetadataEditor(ui, tabname, self)
import gradio as gr
from modules import ui_extra_networks_user_metadata, sd_vae, shared
from modules.ui_common import create_refresh_button
class CheckpointUserMetadataEditor(ui_extra_networks_user_metadata.UserMetadataEditor):
def __init__(self, ui, tabname, page):
super().__init__(ui, tabname, page)
self.select_vae = None
def save_user_metadata(self, name, desc, notes, vae):
user_metadata = self.get_user_metadata(name)
user_metadata["description"] = desc
user_metadata["notes"] = notes
user_metadata["vae"] = vae
self.write_user_metadata(name, user_metadata)
def update_vae(self, name):
if name == shared.sd_model.sd_checkpoint_info.name_for_extra:
sd_vae.reload_vae_weights()
def put_values_into_components(self, name):
user_metadata = self.get_user_metadata(name)
values = super().put_values_into_components(name)
return [
*values[0:5],
user_metadata.get('vae', ''),
]
def create_editor(self):
self.create_default_editor_elems()
with gr.Row():
self.select_vae = gr.Dropdown(choices=["Automatic", "None"] + list(sd_vae.vae_dict), value="None", label="Preferred VAE", elem_id="checpoint_edit_user_metadata_preferred_vae")
create_refresh_button(self.select_vae, sd_vae.refresh_vae_list, lambda: {"choices": ["Automatic", "None"] + list(sd_vae.vae_dict)}, "checpoint_edit_user_metadata_refresh_preferred_vae")
self.edit_notes = gr.TextArea(label='Notes', lines=4)
self.create_default_buttons()
viewed_components = [
self.edit_name,
self.edit_description,
self.html_filedata,
self.html_preview,
self.edit_notes,
self.select_vae,
]
self.button_edit\
.click(fn=self.put_values_into_components, inputs=[self.edit_name_input], outputs=viewed_components)\
.then(fn=lambda: gr.update(visible=True), inputs=[], outputs=[self.box])
edited_components = [
self.edit_description,
self.edit_notes,
self.select_vae,
]
self.setup_save_handler(self.button_save, self.save_user_metadata, edited_components)
self.button_save.click(fn=self.update_vae, inputs=[self.edit_name_input])
......@@ -11,7 +11,7 @@ class ExtraNetworksPageHypernetworks(ui_extra_networks.ExtraNetworksPage):
def refresh(self):
shared.reload_hypernetworks()
def create_item(self, name, index=None):
def create_item(self, name, index=None, enable_filter=True):
full_path = shared.hypernetworks[name]
path, ext = os.path.splitext(full_path)
......
......@@ -12,7 +12,7 @@ class ExtraNetworksPageTextualInversion(ui_extra_networks.ExtraNetworksPage):
def refresh(self):
sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings(force_reload=True)
def create_item(self, name, index=None):
def create_item(self, name, index=None, enable_filter=True):
embedding = sd_hijack.model_hijack.embedding_db.word_embeddings.get(name)
path, ext = os.path.splitext(embedding.filename)
......
......@@ -6,7 +6,7 @@ import modules.generation_parameters_copypaste as parameters_copypaste
def create_ui():
tab_index = gr.State(value=0)
with gr.Row().style(equal_height=False, variant='compact'):
with gr.Row(equal_height=False, variant='compact'):
with gr.Column(variant='compact'):
with gr.Tabs(elem_id="mode_extras"):
with gr.TabItem('Single Image', id="single_image", elem_id="extras_single_tab") as tab_single:
......
import gradio as gr
from modules import shared, ui_common, ui_components, styles
styles_edit_symbol = '\U0001f58c\uFE0F' # 🖌️
styles_materialize_symbol = '\U0001f4cb' # 📋
def select_style(name):
style = shared.prompt_styles.styles.get(name)
existing = style is not None
empty = not name
prompt = style.prompt if style else gr.update()
negative_prompt = style.negative_prompt if style else gr.update()
return prompt, negative_prompt, gr.update(visible=existing), gr.update(visible=not empty)
def save_style(name, prompt, negative_prompt):
if not name:
return gr.update(visible=False)
style = styles.PromptStyle(name, prompt, negative_prompt)
shared.prompt_styles.styles[style.name] = style
shared.prompt_styles.save_styles(shared.styles_filename)
return gr.update(visible=True)
def delete_style(name):
if name == "":
return
shared.prompt_styles.styles.pop(name, None)
shared.prompt_styles.save_styles(shared.styles_filename)
return '', '', ''
def materialize_styles(prompt, negative_prompt, styles):
prompt = shared.prompt_styles.apply_styles_to_prompt(prompt, styles)
negative_prompt = shared.prompt_styles.apply_negative_styles_to_prompt(negative_prompt, styles)
return [gr.Textbox.update(value=prompt), gr.Textbox.update(value=negative_prompt), gr.Dropdown.update(value=[])]
def refresh_styles():
return gr.update(choices=list(shared.prompt_styles.styles)), gr.update(choices=list(shared.prompt_styles.styles))
class UiPromptStyles:
def __init__(self, tabname, main_ui_prompt, main_ui_negative_prompt):
self.tabname = tabname
with gr.Row(elem_id=f"{tabname}_styles_row"):
self.dropdown = gr.Dropdown(label="Styles", show_label=False, elem_id=f"{tabname}_styles", choices=list(shared.prompt_styles.styles), value=[], multiselect=True, tooltip="Styles")
edit_button = ui_components.ToolButton(value=styles_edit_symbol, elem_id=f"{tabname}_styles_edit_button", tooltip="Edit styles")
with gr.Box(elem_id=f"{tabname}_styles_dialog", elem_classes="popup-dialog") as styles_dialog:
with gr.Row():
self.selection = gr.Dropdown(label="Styles", elem_id=f"{tabname}_styles_edit_select", choices=list(shared.prompt_styles.styles), value=[], allow_custom_value=True, info="Styles allow you to add custom text to prompt. Use the {prompt} token in style text, and it will be replaced with user's prompt when applying style. Otherwise, style's text will be added to the end of the prompt.")
ui_common.create_refresh_button([self.dropdown, self.selection], shared.prompt_styles.reload, lambda: {"choices": list(shared.prompt_styles.styles)}, f"refresh_{tabname}_styles")
self.materialize = ui_components.ToolButton(value=styles_materialize_symbol, elem_id=f"{tabname}_style_apply", tooltip="Apply all selected styles from the style selction dropdown in main UI to the prompt.")
with gr.Row():
self.prompt = gr.Textbox(label="Prompt", show_label=True, elem_id=f"{tabname}_edit_style_prompt", lines=3)
with gr.Row():
self.neg_prompt = gr.Textbox(label="Negative prompt", show_label=True, elem_id=f"{tabname}_edit_style_neg_prompt", lines=3)
with gr.Row():
self.save = gr.Button('Save', variant='primary', elem_id=f'{tabname}_edit_style_save', visible=False)
self.delete = gr.Button('Delete', variant='primary', elem_id=f'{tabname}_edit_style_delete', visible=False)
self.close = gr.Button('Close', variant='secondary', elem_id=f'{tabname}_edit_style_close')
self.selection.change(
fn=select_style,
inputs=[self.selection],
outputs=[self.prompt, self.neg_prompt, self.delete, self.save],
show_progress=False,
)
self.save.click(
fn=save_style,
inputs=[self.selection, self.prompt, self.neg_prompt],
outputs=[self.delete],
show_progress=False,
).then(refresh_styles, outputs=[self.dropdown, self.selection], show_progress=False)
self.delete.click(
fn=delete_style,
_js='function(name){ if(name == "") return ""; return confirm("Delete style " + name + "?") ? name : ""; }',
inputs=[self.selection],
outputs=[self.selection, self.prompt, self.neg_prompt],
show_progress=False,
).then(refresh_styles, outputs=[self.dropdown, self.selection], show_progress=False)
self.materialize.click(
fn=materialize_styles,
inputs=[main_ui_prompt, main_ui_negative_prompt, self.dropdown],
outputs=[main_ui_prompt, main_ui_negative_prompt, self.dropdown],
show_progress=False,
).then(fn=None, _js="function(){update_"+tabname+"_tokens(); closePopup();}", show_progress=False)
ui_common.setup_dialog(button_show=edit_button, dialog=styles_dialog, button_close=self.close)
......@@ -158,7 +158,7 @@ class UiSettings:
loadsave.create_ui()
with gr.TabItem("Sysinfo", id="sysinfo", elem_id="settings_tab_sysinfo"):
gr.HTML('<a href="./internal/sysinfo-download" class="sysinfo_big_link" download>Download system info</a><br /><a href="./internal/sysinfo">(or open as text in a new page)</a>', elem_id="sysinfo_download")
gr.HTML('<a href="./internal/sysinfo-download" class="sysinfo_big_link" download>Download system info</a><br /><a href="./internal/sysinfo" target="_blank">(or open as text in a new page)</a>', elem_id="sysinfo_download")
with gr.Row():
with gr.Column(scale=1):
......
......@@ -7,7 +7,7 @@ blendmodes
clean-fid
einops
gfpgan
gradio==3.32.0
gradio==3.39.0
inflection
jsonmerge
kornia
......@@ -30,4 +30,4 @@ tomesd
torch
torchdiffeq
torchsde
transformers==4.25.1
transformers==4.30.2
GitPython==3.1.30
GitPython==3.1.32
Pillow==9.5.0
accelerate==0.18.0
accelerate==0.21.0
basicsr==1.4.2
blendmodes==2022
clean-fid==0.1.35
einops==0.4.1
fastapi==0.94.0
gfpgan==1.3.8
gradio==3.32.0
gradio==3.39.0
httpcore==0.15
inflection==0.5.1
jsonmerge==1.8.0
......@@ -22,10 +22,10 @@ pytorch_lightning==1.9.4
realesrgan==0.3.0
resize-right==0.0.2
safetensors==0.3.1
scikit-image==0.20.0
timm==0.6.7
tomesd==0.1.2
scikit-image==0.21.0
timm==0.9.2
tomesd==0.1.3
torch
torchdiffeq==0.2.3
torchsde==0.2.5
transformers==4.25.1
transformers==4.30.2
......@@ -67,14 +67,6 @@ def apply_order(p, x, xs):
p.prompt = prompt_tmp + p.prompt
def apply_sampler(p, x, xs):
sampler_name = sd_samplers.samplers_map.get(x.lower(), None)
if sampler_name is None:
raise RuntimeError(f"Unknown sampler: {x}")
p.sampler_name = sampler_name
def confirm_samplers(p, xs):
for x in xs:
if x.lower() not in sd_samplers.samplers_map:
......@@ -224,8 +216,9 @@ axis_options = [
AxisOptionImg2Img("Image CFG Scale", float, apply_field("image_cfg_scale")),
AxisOption("Prompt S/R", str, apply_prompt, format_value=format_value),
AxisOption("Prompt order", str_permutations, apply_order, format_value=format_value_join_list),
AxisOptionTxt2Img("Sampler", str, apply_sampler, format_value=format_value, confirm=confirm_samplers, choices=lambda: [x.name for x in sd_samplers.samplers]),
AxisOptionImg2Img("Sampler", str, apply_sampler, format_value=format_value, confirm=confirm_samplers, choices=lambda: [x.name for x in sd_samplers.samplers_for_img2img]),
AxisOptionTxt2Img("Sampler", str, apply_field("sampler_name"), format_value=format_value, confirm=confirm_samplers, choices=lambda: [x.name for x in sd_samplers.samplers]),
AxisOptionTxt2Img("Hires sampler", str, apply_field("hr_sampler_name"), confirm=confirm_samplers, choices=lambda: [x.name for x in sd_samplers.samplers_for_img2img]),
AxisOptionImg2Img("Sampler", str, apply_field("sampler_name"), format_value=format_value, confirm=confirm_samplers, choices=lambda: [x.name for x in sd_samplers.samplers_for_img2img]),
AxisOption("Checkpoint name", str, apply_checkpoint, format_value=format_remove_path, confirm=confirm_checkpoints, cost=1.0, choices=lambda: sorted(sd_models.checkpoints_list, key=str.casefold)),
AxisOption("Negative Guidance minimum sigma", float, apply_field("s_min_uncond")),
AxisOption("Sigma Churn", float, apply_field("s_churn")),
......
......@@ -8,6 +8,7 @@
--checkbox-label-gap: 0.25em 0.1em;
--section-header-text-size: 12pt;
--block-background-fill: transparent;
}
.block.padded:not(.gradio-accordion) {
......@@ -42,7 +43,8 @@ div.form{
.block.gradio-radio,
.block.gradio-checkboxgroup,
.block.gradio-number,
.block.gradio-colorpicker
.block.gradio-colorpicker,
div.gradio-group
{
border-width: 0 !important;
box-shadow: none !important;
......@@ -133,6 +135,15 @@ a{
cursor: pointer;
}
div.styler{
border: none;
background: var(--background-fill-primary);
}
.block.gradio-textbox{
overflow: visible !important;
}
/* general styled components */
......@@ -164,7 +175,7 @@ a{
.checkboxes-row > div{
flex: 0;
white-space: nowrap;
min-width: auto;
min-width: auto !important;
}
button.custom-button{
......@@ -388,6 +399,7 @@ div#extras_scale_to_tab div.form{
#quicksettings > div, #quicksettings > fieldset{
max-width: 24em;
min-width: 24em;
width: 24em;
padding: 0;
border: none;
box-shadow: none;
......@@ -482,6 +494,13 @@ table.popup-table .link{
font-size: 18pt;
}
#settings .settings-info{
max-width: 48em;
border: 1px dotted #777;
margin: 0;
padding: 1em;
}
/* live preview */
.progressDiv{
......@@ -767,9 +786,14 @@ footer {
/* extra networks UI */
.extra-network-cards{
height: 725px;
overflow: scroll;
height: calc(100vh - 24rem);
overflow: clip scroll;
resize: vertical;
min-height: 52rem;
}
.extra-networks > div.tab-nav{
min-height: 3.4rem;
}
.extra-networks > div > [id *= '_extra_']{
......@@ -784,10 +808,12 @@ footer {
margin: 0 0.15em;
}
.extra-networks .tab-nav .search,
.extra-networks .tab-nav .sort{
display: inline-block;
.extra-networks .tab-nav .sort,
.extra-networks .tab-nav .show-dirs
{
margin: 0.3em;
align-self: center;
width: auto;
}
.extra-networks .tab-nav .search {
......@@ -972,3 +998,16 @@ div.block.gradio-box.edit-user-metadata {
.edit-user-metadata-buttons{
margin-top: 1.5em;
}
div.block.gradio-box.popup-dialog, .popup-dialog {
width: 56em;
background: var(--body-background-fill);
padding: 2em !important;
}
div.block.gradio-box.popup-dialog > div:last-child, .popup-dialog > div:last-child{
margin-top: 1em;
}
......@@ -14,7 +14,6 @@ from typing import Iterable
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from fastapi.middleware.gzip import GZipMiddleware
from packaging import version
import logging
......@@ -50,6 +49,7 @@ startup_timer.record("setup paths")
import ldm.modules.encoders.modules # noqa: F401
startup_timer.record("import ldm")
from modules import extra_networks
from modules.call_queue import wrap_gradio_gpu_call, wrap_queued_call, queue_lock # noqa: F401
......@@ -58,10 +58,15 @@ if ".dev" in torch.__version__ or "+git" in torch.__version__:
torch.__long_version__ = torch.__version__
torch.__version__ = re.search(r'[\d.]+[\d]', torch.__version__).group(0)
from modules import shared, sd_samplers, upscaler, extensions, localization, ui_tempdir, ui_extra_networks, config_states
from modules import shared
if not shared.cmd_opts.skip_version_check:
errors.check_versions()
import modules.codeformer_model as codeformer
import modules.face_restoration
import modules.gfpgan_model as gfpgan
from modules import sd_samplers, upscaler, extensions, localization, ui_tempdir, ui_extra_networks, config_states
import modules.face_restoration
import modules.img2img
import modules.lowvram
......@@ -130,37 +135,6 @@ def fix_asyncio_event_loop_policy():
asyncio.set_event_loop_policy(AnyThreadEventLoopPolicy())
def check_versions():
if shared.cmd_opts.skip_version_check:
return
expected_torch_version = "2.0.0"
if version.parse(torch.__version__) < version.parse(expected_torch_version):
errors.print_error_explanation(f"""
You are running torch {torch.__version__}.
The program is tested to work with torch {expected_torch_version}.
To reinstall the desired version, run with commandline flag --reinstall-torch.
Beware that this will cause a lot of large files to be downloaded, as well as
there are reports of issues with training tab on the latest version.
Use --skip-version-check commandline argument to disable this check.
""".strip())
expected_xformers_version = "0.0.20"
if shared.xformers_available:
import xformers
if version.parse(xformers.__version__) < version.parse(expected_xformers_version):
errors.print_error_explanation(f"""
You are running xformers {xformers.__version__}.
The program is tested to work with xformers {expected_xformers_version}.
To reinstall the desired version, run with commandline flag --reinstall-xformers.
Use --skip-version-check commandline argument to disable this check.
""".strip())
def restore_config_state_file():
config_state_file = shared.opts.restore_config_state_file
if config_state_file == "":
......@@ -237,7 +211,7 @@ def configure_sigint_handler():
def configure_opts_onchange():
shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights()), call=False)
shared.opts.onchange("sd_vae", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False)
shared.opts.onchange("sd_vae_as_default", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False)
shared.opts.onchange("sd_vae_overrides_per_model_preferences", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False)
shared.opts.onchange("temp_dir", ui_tempdir.on_tmpdir_changed)
shared.opts.onchange("gradio_theme", shared.reload_gradio_theme)
shared.opts.onchange("cross_attention_optimization", wrap_queued_call(lambda: modules.sd_hijack.model_hijack.redo_hijack(shared.sd_model)), call=False)
......@@ -248,7 +222,6 @@ def initialize():
fix_asyncio_event_loop_policy()
validate_tls_options()
configure_sigint_handler()
check_versions()
modelloader.cleanup_models()
configure_opts_onchange()
......@@ -368,6 +341,7 @@ def api_only():
setup_middleware(app)
api = create_api(app)
modules.script_callbacks.before_ui_callback()
modules.script_callbacks.app_started_callback(None, app)
print(f"Startup time: {startup_timer.summary()}.")
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment