Commit e0531221 authored by nanahira's avatar nanahira

Merge branch 'master' of github.com:AUTOMATIC1111/stable-diffusion-webui

parents 254c0e03 baf6946e
extensions
extensions-disabled
repositories
venv
\ No newline at end of file
/* global module */
module.exports = {
env: {
browser: true,
es2021: true,
},
extends: "eslint:recommended",
parserOptions: {
ecmaVersion: "latest",
},
rules: {
"arrow-spacing": "error",
"block-spacing": "error",
"brace-style": "error",
"comma-dangle": ["error", "only-multiline"],
"comma-spacing": "error",
"comma-style": ["error", "last"],
"curly": ["error", "multi-line", "consistent"],
"eol-last": "error",
"func-call-spacing": "error",
"function-call-argument-newline": ["error", "consistent"],
"function-paren-newline": ["error", "consistent"],
"indent": ["error", 4],
"key-spacing": "error",
"keyword-spacing": "error",
"linebreak-style": ["error", "unix"],
"no-extra-semi": "error",
"no-mixed-spaces-and-tabs": "error",
"no-multi-spaces": "error",
"no-redeclare": ["error", {builtinGlobals: false}],
"no-trailing-spaces": "error",
"no-unused-vars": "off",
"no-whitespace-before-property": "error",
"object-curly-newline": ["error", {consistent: true, multiline: true}],
"object-curly-spacing": ["error", "never"],
"operator-linebreak": ["error", "after"],
"quote-props": ["error", "consistent-as-needed"],
"semi": ["error", "always"],
"semi-spacing": "error",
"semi-style": ["error", "last"],
"space-before-blocks": "error",
"space-before-function-paren": ["error", "never"],
"space-in-parens": ["error", "never"],
"space-infix-ops": "error",
"space-unary-ops": "error",
"switch-colon-spacing": "error",
"template-curly-spacing": ["error", "never"],
"unicode-bom": "error",
},
globals: {
//script.js
gradioApp: "readonly",
onUiLoaded: "readonly",
onUiUpdate: "readonly",
onOptionsChanged: "readonly",
uiCurrentTab: "writable",
uiElementIsVisible: "readonly",
uiElementInSight: "readonly",
executeCallbacks: "readonly",
//ui.js
opts: "writable",
all_gallery_buttons: "readonly",
selected_gallery_button: "readonly",
selected_gallery_index: "readonly",
switch_to_txt2img: "readonly",
switch_to_img2img_tab: "readonly",
switch_to_img2img: "readonly",
switch_to_sketch: "readonly",
switch_to_inpaint: "readonly",
switch_to_inpaint_sketch: "readonly",
switch_to_extras: "readonly",
get_tab_index: "readonly",
create_submit_args: "readonly",
restart_reload: "readonly",
updateInput: "readonly",
//extraNetworks.js
requestGet: "readonly",
popup: "readonly",
// from python
localization: "readonly",
// progrssbar.js
randomId: "readonly",
requestProgress: "readonly",
// imageviewer.js
modalPrevImage: "readonly",
modalNextImage: "readonly",
}
};
# Apply ESlint
9c54b78d9dde5601e916f308d9a9d6953ec39430
\ No newline at end of file
......@@ -47,6 +47,15 @@ body:
description: Which commit are you running ? (Do not write *Latest version/repo/commit*, as this means nothing and will have changed by the time we read your issue. Rather, copy the **Commit** link at the bottom of the UI, or from the cmd/terminal if you can't launch it.)
validations:
required: true
- type: dropdown
id: py-version
attributes:
label: What Python version are you running on ?
multiple: false
options:
- Python 3.10.x
- Python 3.11.x (above, no supported yet)
- Python 3.9.x (below, no recommended)
- type: dropdown
id: platforms
attributes:
......@@ -59,6 +68,18 @@ body:
- iOS
- Android
- Other/Cloud
- type: dropdown
id: device
attributes:
label: What device are you running WebUI on?
multiple: true
options:
- Nvidia GPUs (RTX 20 above)
- Nvidia GPUs (GTX 16 below)
- AMD GPUs (RX 6000 above)
- AMD GPUs (RX 5000 below)
- CPU
- Other GPUs
- type: dropdown
id: browsers
attributes:
......
# Please read the [contributing wiki page](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Contributing) before submitting a pull request!
## Description
If you have a large change, pay special attention to this paragraph:
* a simple description of what you're trying to accomplish
* a summary of changes in code
* which issues it fixes, if any
> Before making changes, if you think that your feature will result in more than 100 lines changing, find me and talk to me about the feature you are proposing. It pains me to reject the hard work someone else did, but I won't add everything to the repo, and it's better if the rejection happens before you have to waste time working on the feature.
## Screenshots/videos:
Otherwise, after making sure you're following the rules described in wiki page, remove this section and continue on.
**Describe what this pull request is trying to achieve.**
## Checklist:
A clear and concise description of what you're trying to accomplish with this, so your intent doesn't have to be extracted from your code.
**Additional notes and description of your changes**
More technical discussion about your changes go here, plus anything that a maintainer might have to specifically take a look at, or be wary of.
**Environment this was tested in**
List the environment you have developed / tested this on. As per the contributing page, changes should be able to work on Windows out of the box.
- OS: [e.g. Windows, Linux]
- Browser: [e.g. chrome, safari]
- Graphics card: [e.g. NVIDIA RTX 2080 8GB, AMD RX 6600 8GB]
**Screenshots or videos of your changes**
If applicable, screenshots or a video showing off your changes. If it edits an existing UI, it should ideally contain a comparison of what used to be there, before your changes were made.
This is **required** for anything that touches the user interface.
\ No newline at end of file
- [ ] I have read [contributing wiki page](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Contributing)
- [ ] I have performed a self-review of my own code
- [ ] My code follows the [style guidelines](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Contributing#code-style)
- [ ] My code passes [tests](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Tests)
# See https://github.com/actions/starter-workflows/blob/1067f16ad8a1eac328834e4b0ae24f7d206f810d/ci/pylint.yml for original reference file
name: Run Linting/Formatting on Pull Requests
on:
- push
- pull_request
# See https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions#onpull_requestpull_request_targetbranchesbranches-ignore for syntax docs
# if you want to filter out branches, delete the `- pull_request` and uncomment these lines :
# pull_request:
# branches:
# - master
# branches-ignore:
# - development
jobs:
lint:
lint-python:
runs-on: ubuntu-latest
steps:
- name: Checkout Code
uses: actions/checkout@v3
- name: Set up Python 3.10
uses: actions/setup-python@v4
- uses: actions/setup-python@v4
with:
python-version: 3.10.6
cache: pip
cache-dependency-path: |
**/requirements*txt
- name: Install PyLint
run: |
python -m pip install --upgrade pip
pip install pylint
# This lets PyLint check to see if it can resolve imports
- name: Install dependencies
run: |
export COMMANDLINE_ARGS="--skip-torch-cuda-test --exit"
python launch.py
- name: Analysing the code with pylint
run: |
pylint $(git ls-files '*.py')
python-version: 3.11
# NB: there's no cache: pip here since we're not installing anything
# from the requirements.txt file(s) in the repository; it's faster
# not to have GHA download an (at the time of writing) 4 GB cache
# of PyTorch and other dependencies.
- name: Install Ruff
run: pip install ruff==0.0.265
- name: Run Ruff
run: ruff .
lint-js:
runs-on: ubuntu-latest
steps:
- name: Checkout Code
uses: actions/checkout@v3
- name: Install Node.js
uses: actions/setup-node@v3
with:
node-version: 18
- run: npm i --ci
- run: npm run lint
......@@ -17,13 +17,54 @@ jobs:
cache: pip
cache-dependency-path: |
**/requirements*txt
launch.py
- name: Install test dependencies
run: pip install wait-for-it -r requirements-test.txt
env:
PIP_DISABLE_PIP_VERSION_CHECK: "1"
PIP_PROGRESS_BAR: "off"
- name: Setup environment
run: python launch.py --skip-torch-cuda-test --exit
env:
PIP_DISABLE_PIP_VERSION_CHECK: "1"
PIP_PROGRESS_BAR: "off"
TORCH_INDEX_URL: https://download.pytorch.org/whl/cpu
WEBUI_LAUNCH_LIVE_OUTPUT: "1"
PYTHONUNBUFFERED: "1"
- name: Start test server
run: >
python -m coverage run
--data-file=.coverage.server
launch.py
--skip-prepare-environment
--skip-torch-cuda-test
--test-server
--no-half
--disable-opt-split-attention
--use-cpu all
--add-stop-route
2>&1 | tee output.txt &
- name: Run tests
run: python launch.py --tests test --no-half --disable-opt-split-attention --use-cpu all --skip-torch-cuda-test
- name: Upload main app stdout-stderr
run: |
wait-for-it --service 127.0.0.1:7860 -t 600
python -m pytest -vv --junitxml=test/results.xml --cov . --cov-report=xml --verify-base-url test
- name: Kill test server
if: always()
run: curl -vv -XPOST http://127.0.0.1:7860/_stop && sleep 10
- name: Show coverage
run: |
python -m coverage combine .coverage*
python -m coverage report -i
python -m coverage html -i
- name: Upload main app output
uses: actions/upload-artifact@v3
if: always()
with:
name: output
path: output.txt
- name: Upload coverage HTML
uses: actions/upload-artifact@v3
if: always()
with:
name: stdout-stderr
path: |
test/stdout.txt
test/stderr.txt
name: htmlcov
path: htmlcov
......@@ -32,4 +32,8 @@ notification.mp3
/extensions
/test/stdout.txt
/test/stderr.txt
/cache.json
/cache.json*
/config_states/
/node_modules
/package-lock.json
/.coverage*
This diff is collapsed.
......@@ -15,7 +15,7 @@ A browser interface based on Gradio library for Stable Diffusion.
- Attention, specify parts of text that the model should pay more attention to
- a man in a `((tuxedo))` - will pay more attention to tuxedo
- a man in a `(tuxedo:1.21)` - alternative syntax
- select text and press `Ctrl+Up` or `Ctrl+Down` to automatically adjust attention to selected text (code contributed by anonymous user)
- select text and press `Ctrl+Up` or `Ctrl+Down` (or `Command+Up` or `Command+Down` if you're on a MacOS) to automatically adjust attention to selected text (code contributed by anonymous user)
- Loopback, run img2img processing multiple times
- X/Y/Z plot, a way to draw a 3 dimensional plot of images with different parameters
- Textual Inversion
......@@ -99,8 +99,14 @@ Alternatively, use online services (like Google Colab):
- [List of Online Services](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Online-Services)
### Installation on Windows 10/11 with NVidia-GPUs using release package
1. Download `sd.webui.zip` from [v1.0.0-pre](https://github.com/AUTOMATIC1111/stable-diffusion-webui/releases/tag/v1.0.0-pre) and extract it's contents.
2. Run `update.bat`.
3. Run `run.bat`.
> For more details see [Install-and-Run-on-NVidia-GPUs](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs)
### Automatic Installation on Windows
1. Install [Python 3.10.6](https://www.python.org/downloads/windows/), checking "Add Python to PATH".
1. Install [Python 3.10.6](https://www.python.org/downloads/release/python-3106/) (Newer version of Python does not support torch), checking "Add Python to PATH".
2. Install [git](https://git-scm.com/download/win).
3. Download the stable-diffusion-webui repository, for example by running `git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git`.
4. Run `webui-user.bat` from Windows Explorer as normal, non-administrator, user.
......@@ -115,11 +121,12 @@ sudo dnf install wget git python3
# Arch-based:
sudo pacman -S wget git python3
```
2. To install in `/home/$(whoami)/stable-diffusion-webui/`, run:
2. Navigate to the directory you would like the webui to be installed and execute the following command:
```bash
bash <(wget -qO- https://raw.githubusercontent.com/AUTOMATIC1111/stable-diffusion-webui/master/webui.sh)
```
3. Run `webui.sh`.
4. Check `webui-user.sh` for options.
### Installation on Apple Silicon
Find the instructions [here](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Installation-on-Apple-Silicon).
......@@ -157,5 +164,6 @@ Licenses for borrowed code can be found in `Settings -> Licenses` screen, and al
- Instruct pix2pix - Tim Brooks (star), Aleksander Holynski (star), Alexei A. Efros (no star) - https://github.com/timothybrooks/instruct-pix2pix
- Security advice - RyotaK
- UniPC sampler - Wenliang Zhao - https://github.com/wl-zhao/UniPC
- TAESD - Ollin Boer Bohan - https://github.com/madebyollin/taesd
- Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user.
- (You)
\ No newline at end of file
- (You)
......@@ -4,8 +4,8 @@ channels:
- defaults
dependencies:
- python=3.10
- pip=22.2.2
- cudatoolkit=11.3
- pytorch=1.12.1
- torchvision=0.13.1
- numpy=1.23.1
\ No newline at end of file
- pip=23.0
- cudatoolkit=11.8
- pytorch=2.0
- torchvision=0.15
- numpy=1.23
......@@ -88,7 +88,7 @@ class LDSR:
x_t = None
logs = None
for n in range(n_runs):
for _ in range(n_runs):
if custom_shape is not None:
x_t = torch.randn(1, custom_shape[1], custom_shape[2], custom_shape[3]).to(model.device)
x_t = repeat(x_t, '1 c h w -> b c h w', b=custom_shape[0])
......@@ -110,7 +110,6 @@ class LDSR:
diffusion_steps = int(steps)
eta = 1.0
down_sample_method = 'Lanczos'
gc.collect()
if torch.cuda.is_available:
......@@ -131,11 +130,11 @@ class LDSR:
im_og = im_og.resize((width_downsampled_pre, height_downsampled_pre), Image.LANCZOS)
else:
print(f"Down sample rate is 1 from {target_scale} / 4 (Not downsampling)")
# pad width and height to multiples of 64, pads with the edge values of image to avoid artifacts
pad_w, pad_h = np.max(((2, 2), np.ceil(np.array(im_og.size) / 64).astype(int)), axis=0) * 64 - im_og.size
im_padded = Image.fromarray(np.pad(np.array(im_og), ((0, pad_h), (0, pad_w), (0, 0)), mode='edge'))
logs = self.run(model["model"], im_padded, diffusion_steps, eta)
sample = logs["sample"]
......@@ -158,7 +157,7 @@ class LDSR:
def get_cond(selected_path):
example = dict()
example = {}
up_f = 4
c = selected_path.convert('RGB')
c = torch.unsqueeze(torchvision.transforms.ToTensor()(c), 0)
......@@ -196,7 +195,7 @@ def convsample_ddim(model, cond, steps, shape, eta=1.0, callback=None, normals_s
@torch.no_grad()
def make_convolutional_sample(batch, model, custom_steps=None, eta=1.0, quantize_x0=False, custom_shape=None, temperature=1., noise_dropout=0., corrector=None,
corrector_kwargs=None, x_T=None, ddim_use_x0_pred=False):
log = dict()
log = {}
z, c, x, xrec, xc = model.get_input(batch, model.first_stage_key,
return_first_stage_outputs=True,
......@@ -244,7 +243,7 @@ def make_convolutional_sample(batch, model, custom_steps=None, eta=1.0, quantize
x_sample_noquant = model.decode_first_stage(sample, force_not_quantize=True)
log["sample_noquant"] = x_sample_noquant
log["sample_diff"] = torch.abs(x_sample_noquant - x_sample)
except:
except Exception:
pass
log["sample"] = x_sample
......
......@@ -7,7 +7,8 @@ from basicsr.utils.download_util import load_file_from_url
from modules.upscaler import Upscaler, UpscalerData
from ldsr_model_arch import LDSR
from modules import shared, script_callbacks
import sd_hijack_autoencoder, sd_hijack_ddpm_v1
import sd_hijack_autoencoder # noqa: F401
import sd_hijack_ddpm_v1 # noqa: F401
class UpscalerLDSR(Upscaler):
......@@ -25,22 +26,28 @@ class UpscalerLDSR(Upscaler):
yaml_path = os.path.join(self.model_path, "project.yaml")
old_model_path = os.path.join(self.model_path, "model.pth")
new_model_path = os.path.join(self.model_path, "model.ckpt")
safetensors_model_path = os.path.join(self.model_path, "model.safetensors")
local_model_paths = self.find_models(ext_filter=[".ckpt", ".safetensors"])
local_ckpt_path = next(iter([local_model for local_model in local_model_paths if local_model.endswith("model.ckpt")]), None)
local_safetensors_path = next(iter([local_model for local_model in local_model_paths if local_model.endswith("model.safetensors")]), None)
local_yaml_path = next(iter([local_model for local_model in local_model_paths if local_model.endswith("project.yaml")]), None)
if os.path.exists(yaml_path):
statinfo = os.stat(yaml_path)
if statinfo.st_size >= 10485760:
print("Removing invalid LDSR YAML file.")
os.remove(yaml_path)
if os.path.exists(old_model_path):
print("Renaming model from model.pth to model.ckpt")
os.rename(old_model_path, new_model_path)
if os.path.exists(safetensors_model_path):
model = safetensors_model_path
if local_safetensors_path is not None and os.path.exists(local_safetensors_path):
model = local_safetensors_path
else:
model = load_file_from_url(url=self.model_url, model_dir=self.model_path,
file_name="model.ckpt", progress=True)
yaml = load_file_from_url(url=self.yaml_url, model_dir=self.model_path,
file_name="project.yaml", progress=True)
model = local_ckpt_path if local_ckpt_path is not None else load_file_from_url(url=self.model_url, model_dir=self.model_download_path, file_name="model.ckpt", progress=True)
yaml = local_yaml_path if local_yaml_path is not None else load_file_from_url(url=self.yaml_url, model_dir=self.model_download_path, file_name="project.yaml", progress=True)
try:
return LDSR(model, yaml)
......
# The content of this file comes from the ldm/models/autoencoder.py file of the compvis/stable-diffusion repo
# The VQModel & VQModelInterface were subsequently removed from ldm/models/autoencoder.py when we moved to the stability-ai/stablediffusion repo
# As the LDSR upscaler relies on VQModel & VQModelInterface, the hijack aims to put them back into the ldm.models.autoencoder
import numpy as np
import torch
import pytorch_lightning as pl
import torch.nn.functional as F
from contextlib import contextmanager
from torch.optim.lr_scheduler import LambdaLR
from ldm.modules.ema import LitEma
from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer
from ldm.modules.diffusionmodules.model import Encoder, Decoder
from ldm.util import instantiate_from_config
import ldm.models.autoencoder
from packaging import version
class VQModel(pl.LightningModule):
def __init__(self,
......@@ -19,7 +24,7 @@ class VQModel(pl.LightningModule):
n_embed,
embed_dim,
ckpt_path=None,
ignore_keys=[],
ignore_keys=None,
image_key="image",
colorize_nlabels=None,
monitor=None,
......@@ -57,7 +62,7 @@ class VQModel(pl.LightningModule):
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
if ckpt_path is not None:
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys or [])
self.scheduler_config = scheduler_config
self.lr_g_factor = lr_g_factor
......@@ -76,11 +81,11 @@ class VQModel(pl.LightningModule):
if context is not None:
print(f"{context}: Restored training weights")
def init_from_ckpt(self, path, ignore_keys=list()):
def init_from_ckpt(self, path, ignore_keys=None):
sd = torch.load(path, map_location="cpu")["state_dict"]
keys = list(sd.keys())
for k in keys:
for ik in ignore_keys:
for ik in ignore_keys or []:
if k.startswith(ik):
print("Deleting key {} from state_dict.".format(k))
del sd[k]
......@@ -165,7 +170,7 @@ class VQModel(pl.LightningModule):
def validation_step(self, batch, batch_idx):
log_dict = self._validation_step(batch, batch_idx)
with self.ema_scope():
log_dict_ema = self._validation_step(batch, batch_idx, suffix="_ema")
self._validation_step(batch, batch_idx, suffix="_ema")
return log_dict
def _validation_step(self, batch, batch_idx, suffix=""):
......@@ -232,7 +237,7 @@ class VQModel(pl.LightningModule):
return self.decoder.conv_out.weight
def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs):
log = dict()
log = {}
x = self.get_input(batch, self.image_key)
x = x.to(self.device)
if only_inputs:
......@@ -249,7 +254,8 @@ class VQModel(pl.LightningModule):
if plot_ema:
with self.ema_scope():
xrec_ema, _ = self(x)
if x.shape[1] > 3: xrec_ema = self.to_rgb(xrec_ema)
if x.shape[1] > 3:
xrec_ema = self.to_rgb(xrec_ema)
log["reconstructions_ema"] = xrec_ema
return log
......@@ -264,7 +270,7 @@ class VQModel(pl.LightningModule):
class VQModelInterface(VQModel):
def __init__(self, embed_dim, *args, **kwargs):
super().__init__(embed_dim=embed_dim, *args, **kwargs)
super().__init__(*args, embed_dim=embed_dim, **kwargs)
self.embed_dim = embed_dim
def encode(self, x):
......@@ -282,5 +288,5 @@ class VQModelInterface(VQModel):
dec = self.decoder(quant)
return dec
setattr(ldm.models.autoencoder, "VQModel", VQModel)
setattr(ldm.models.autoencoder, "VQModelInterface", VQModelInterface)
ldm.models.autoencoder.VQModel = VQModel
ldm.models.autoencoder.VQModelInterface = VQModelInterface
......@@ -48,7 +48,7 @@ class DDPMV1(pl.LightningModule):
beta_schedule="linear",
loss_type="l2",
ckpt_path=None,
ignore_keys=[],
ignore_keys=None,
load_only_unet=False,
monitor="val/loss",
use_ema=True,
......@@ -100,7 +100,7 @@ class DDPMV1(pl.LightningModule):
if monitor is not None:
self.monitor = monitor
if ckpt_path is not None:
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys or [], only_model=load_only_unet)
self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
......@@ -182,13 +182,13 @@ class DDPMV1(pl.LightningModule):
if context is not None:
print(f"{context}: Restored training weights")
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
def init_from_ckpt(self, path, ignore_keys=None, only_model=False):
sd = torch.load(path, map_location="cpu")
if "state_dict" in list(sd.keys()):
sd = sd["state_dict"]
keys = list(sd.keys())
for k in keys:
for ik in ignore_keys:
for ik in ignore_keys or []:
if k.startswith(ik):
print("Deleting key {} from state_dict.".format(k))
del sd[k]
......@@ -375,7 +375,7 @@ class DDPMV1(pl.LightningModule):
@torch.no_grad()
def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
log = dict()
log = {}
x = self.get_input(batch, self.first_stage_key)
N = min(x.shape[0], N)
n_row = min(x.shape[0], n_row)
......@@ -383,7 +383,7 @@ class DDPMV1(pl.LightningModule):
log["inputs"] = x
# get diffusion row
diffusion_row = list()
diffusion_row = []
x_start = x[:n_row]
for t in range(self.num_timesteps):
......@@ -444,13 +444,13 @@ class LatentDiffusionV1(DDPMV1):
conditioning_key = None
ckpt_path = kwargs.pop("ckpt_path", None)
ignore_keys = kwargs.pop("ignore_keys", [])
super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
super().__init__(*args, conditioning_key=conditioning_key, **kwargs)
self.concat_mode = concat_mode
self.cond_stage_trainable = cond_stage_trainable
self.cond_stage_key = cond_stage_key
try:
self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
except:
except Exception:
self.num_downs = 0
if not scale_by_std:
self.scale_factor = scale_factor
......@@ -460,7 +460,7 @@ class LatentDiffusionV1(DDPMV1):
self.instantiate_cond_stage(cond_stage_config)
self.cond_stage_forward = cond_stage_forward
self.clip_denoised = False
self.bbox_tokenizer = None
self.bbox_tokenizer = None
self.restarted_from_ckpt = False
if ckpt_path is not None:
......@@ -792,7 +792,7 @@ class LatentDiffusionV1(DDPMV1):
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
# 2. apply model loop over last dim
if isinstance(self.first_stage_model, VQModelInterface):
if isinstance(self.first_stage_model, VQModelInterface):
output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
force_not_quantize=predict_cids or force_not_quantize)
for i in range(z.shape[-1])]
......@@ -877,16 +877,6 @@ class LatentDiffusionV1(DDPMV1):
c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
return self.p_losses(x, c, t, *args, **kwargs)
def _rescale_annotations(self, bboxes, crop_coordinates): # TODO: move to dataset
def rescale_bbox(bbox):
x0 = clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2])
y0 = clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3])
w = min(bbox[2] / crop_coordinates[2], 1 - x0)
h = min(bbox[3] / crop_coordinates[3], 1 - y0)
return x0, y0, w, h
return [rescale_bbox(b) for b in bboxes]
def apply_model(self, x_noisy, t, cond, return_ids=False):
if isinstance(cond, dict):
......@@ -900,7 +890,7 @@ class LatentDiffusionV1(DDPMV1):
if hasattr(self, "split_input_params"):
assert len(cond) == 1 # todo can only deal with one conditioning atm
assert not return_ids
assert not return_ids
ks = self.split_input_params["ks"] # eg. (128, 128)
stride = self.split_input_params["stride"] # eg. (64, 64)
......@@ -1126,7 +1116,7 @@ class LatentDiffusionV1(DDPMV1):
if cond is not None:
if isinstance(cond, dict):
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
[x[:batch_size] for x in cond[key]] for key in cond}
else:
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
......@@ -1157,8 +1147,10 @@ class LatentDiffusionV1(DDPMV1):
if i % log_every_t == 0 or i == timesteps - 1:
intermediates.append(x0_partial)
if callback: callback(i)
if img_callback: img_callback(img, i)
if callback:
callback(i)
if img_callback:
img_callback(img, i)
return img, intermediates
@torch.no_grad()
......@@ -1205,8 +1197,10 @@ class LatentDiffusionV1(DDPMV1):
if i % log_every_t == 0 or i == timesteps - 1:
intermediates.append(img)
if callback: callback(i)
if img_callback: img_callback(img, i)
if callback:
callback(i)
if img_callback:
img_callback(img, i)
if return_intermediates:
return img, intermediates
......@@ -1221,7 +1215,7 @@ class LatentDiffusionV1(DDPMV1):
if cond is not None:
if isinstance(cond, dict):
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
[x[:batch_size] for x in cond[key]] for key in cond}
else:
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
return self.p_sample_loop(cond,
......@@ -1253,7 +1247,7 @@ class LatentDiffusionV1(DDPMV1):
use_ddim = ddim_steps is not None
log = dict()
log = {}
z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
return_first_stage_outputs=True,
force_c_encode=True,
......@@ -1280,7 +1274,7 @@ class LatentDiffusionV1(DDPMV1):
if plot_diffusion_rows:
# get diffusion row
diffusion_row = list()
diffusion_row = []
z_start = z[:n_row]
for t in range(self.num_timesteps):
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
......@@ -1322,7 +1316,7 @@ class LatentDiffusionV1(DDPMV1):
if inpaint:
# make a simple center square
b, h, w = z.shape[0], z.shape[2], z.shape[3]
h, w = z.shape[2], z.shape[3]
mask = torch.ones(N, h, w).to(self.device)
# zeros will be filled in
mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
......@@ -1424,10 +1418,10 @@ class Layout2ImgDiffusionV1(LatentDiffusionV1):
# TODO: move all layout-specific hacks to this class
def __init__(self, cond_stage_key, *args, **kwargs):
assert cond_stage_key == 'coordinates_bbox', 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"'
super().__init__(cond_stage_key=cond_stage_key, *args, **kwargs)
super().__init__(*args, cond_stage_key=cond_stage_key, **kwargs)
def log_images(self, batch, N=8, *args, **kwargs):
logs = super().log_images(batch=batch, N=N, *args, **kwargs)
logs = super().log_images(*args, batch=batch, N=N, **kwargs)
key = 'train' if self.training else 'validation'
dset = self.trainer.datamodule.datasets[key]
......@@ -1443,7 +1437,7 @@ class Layout2ImgDiffusionV1(LatentDiffusionV1):
logs['bbox_image'] = cond_img
return logs
setattr(ldm.models.diffusion.ddpm, "DDPMV1", DDPMV1)
setattr(ldm.models.diffusion.ddpm, "LatentDiffusionV1", LatentDiffusionV1)
setattr(ldm.models.diffusion.ddpm, "DiffusionWrapperV1", DiffusionWrapperV1)
setattr(ldm.models.diffusion.ddpm, "Layout2ImgDiffusionV1", Layout2ImgDiffusionV1)
ldm.models.diffusion.ddpm.DDPMV1 = DDPMV1
ldm.models.diffusion.ddpm.LatentDiffusionV1 = LatentDiffusionV1
ldm.models.diffusion.ddpm.DiffusionWrapperV1 = DiffusionWrapperV1
ldm.models.diffusion.ddpm.Layout2ImgDiffusionV1 = Layout2ImgDiffusionV1
from modules import extra_networks, shared
import lora
class ExtraNetworkLora(extra_networks.ExtraNetwork):
def __init__(self):
super().__init__('lora')
......@@ -8,7 +9,7 @@ class ExtraNetworkLora(extra_networks.ExtraNetwork):
def activate(self, p, params_list):
additional = shared.opts.sd_lora
if additional != "" and additional in lora.available_loras and len([x for x in params_list if x.items[0] == additional]) == 0:
if additional != "None" and additional in lora.available_loras and len([x for x in params_list if x.items[0] == additional]) == 0:
p.all_prompts = [x + f"<lora:{additional}:{shared.opts.extra_networks_default_multiplier}>" for x in p.all_prompts]
params_list.append(extra_networks.ExtraNetworkParams(items=[additional, shared.opts.extra_networks_default_multiplier]))
......@@ -22,5 +23,23 @@ class ExtraNetworkLora(extra_networks.ExtraNetwork):
lora.load_loras(names, multipliers)
if shared.opts.lora_add_hashes_to_infotext:
lora_hashes = []
for item in lora.loaded_loras:
shorthash = item.lora_on_disk.shorthash
if not shorthash:
continue
alias = item.mentioned_name
if not alias:
continue
alias = alias.replace(":", "").replace(",", "")
lora_hashes.append(f"{alias}: {shorthash}")
if lora_hashes:
p.extra_generation_params["Lora hashes"] = ", ".join(lora_hashes)
def deactivate(self, p):
pass
This diff is collapsed.
import re
import torch
import gradio as gr
from fastapi import FastAPI
import lora
import extra_networks_lora
import ui_extra_networks_lora
from modules import script_callbacks, ui_extra_networks, extra_networks, shared
def unload():
torch.nn.Linear.forward = torch.nn.Linear_forward_before_lora
torch.nn.Linear._load_from_state_dict = torch.nn.Linear_load_state_dict_before_lora
......@@ -49,8 +51,66 @@ torch.nn.MultiheadAttention._load_from_state_dict = lora.lora_MultiheadAttention
script_callbacks.on_model_loaded(lora.assign_lora_names_to_compvis_modules)
script_callbacks.on_script_unloaded(unload)
script_callbacks.on_before_ui(before_ui)
script_callbacks.on_infotext_pasted(lora.infotext_pasted)
shared.options_templates.update(shared.options_section(('extra_networks', "Extra Networks"), {
"sd_lora": shared.OptionInfo("None", "Add Lora to prompt", gr.Dropdown, lambda: {"choices": [""] + [x for x in lora.available_loras]}, refresh=lora.list_available_loras),
"sd_lora": shared.OptionInfo("None", "Add Lora to prompt", gr.Dropdown, lambda: {"choices": ["None", *lora.available_loras]}, refresh=lora.list_available_loras),
"lora_preferred_name": shared.OptionInfo("Alias from file", "When adding to prompt, refer to Lora by", gr.Radio, {"choices": ["Alias from file", "Filename"]}),
"lora_add_hashes_to_infotext": shared.OptionInfo(True, "Add Lora hashes to infotext"),
}))
shared.options_templates.update(shared.options_section(('compatibility', "Compatibility"), {
"lora_functional": shared.OptionInfo(False, "Lora: use old method that takes longer when you have multiple Loras active and produces same results as kohya-ss/sd-webui-additional-networks extension"),
}))
def create_lora_json(obj: lora.LoraOnDisk):
return {
"name": obj.name,
"alias": obj.alias,
"path": obj.filename,
"metadata": obj.metadata,
}
def api_loras(_: gr.Blocks, app: FastAPI):
@app.get("/sdapi/v1/loras")
async def get_loras():
return [create_lora_json(obj) for obj in lora.available_loras.values()]
@app.post("/sdapi/v1/refresh-loras")
async def refresh_loras():
return lora.list_available_loras()
script_callbacks.on_app_started(api_loras)
re_lora = re.compile("<lora:([^:]+):")
def infotext_pasted(infotext, d):
hashes = d.get("Lora hashes")
if not hashes:
return
hashes = [x.strip().split(':', 1) for x in hashes.split(",")]
hashes = {x[0].strip().replace(",", ""): x[1].strip() for x in hashes}
def lora_replacement(m):
alias = m.group(1)
shorthash = hashes.get(alias)
if shorthash is None:
return m.group(0)
lora_on_disk = lora.available_lora_hash_lookup.get(shorthash)
if lora_on_disk is None:
return m.group(0)
return f'<lora:{lora_on_disk.get_alias()}:'
d["Prompt"] = re.sub(re_lora, lora_replacement, d["Prompt"])
script_callbacks.on_infotext_pasted(infotext_pasted)
......@@ -15,13 +15,16 @@ class ExtraNetworksPageLora(ui_extra_networks.ExtraNetworksPage):
def list_items(self):
for name, lora_on_disk in lora.available_loras.items():
path, ext = os.path.splitext(lora_on_disk.filename)
alias = lora_on_disk.get_alias()
yield {
"name": name,
"filename": path,
"preview": self.find_preview(path),
"description": self.find_description(path),
"search_term": self.search_terms_from_path(lora_on_disk.filename),
"prompt": json.dumps(f"<lora:{name}:") + " + opts.extra_networks_default_multiplier + " + json.dumps(">"),
"prompt": json.dumps(f"<lora:{alias}:") + " + opts.extra_networks_default_multiplier + " + json.dumps(">"),
"local_preview": f"{path}.{shared.opts.samples_format}",
"metadata": json.dumps(lora_on_disk.metadata, indent=4) if lora_on_disk.metadata else None,
}
......
......@@ -5,11 +5,14 @@ import traceback
import PIL.Image
import numpy as np
import torch
from tqdm import tqdm
from basicsr.utils.download_util import load_file_from_url
import modules.upscaler
from modules import devices, modelloader
from modules import devices, modelloader, script_callbacks
from scunet_model_arch import SCUNet as net
from modules.shared import opts
class UpscalerScuNET(modules.upscaler.Upscaler):
......@@ -42,34 +45,83 @@ class UpscalerScuNET(modules.upscaler.Upscaler):
scalers.append(scaler_data2)
self.scalers = scalers
def do_upscale(self, img: PIL.Image, selected_file):
@staticmethod
@torch.no_grad()
def tiled_inference(img, model):
# test the image tile by tile
h, w = img.shape[2:]
tile = opts.SCUNET_tile
tile_overlap = opts.SCUNET_tile_overlap
if tile == 0:
return model(img)
device = devices.get_device_for('scunet')
assert tile % 8 == 0, "tile size should be a multiple of window_size"
sf = 1
stride = tile - tile_overlap
h_idx_list = list(range(0, h - tile, stride)) + [h - tile]
w_idx_list = list(range(0, w - tile, stride)) + [w - tile]
E = torch.zeros(1, 3, h * sf, w * sf, dtype=img.dtype, device=device)
W = torch.zeros_like(E, dtype=devices.dtype, device=device)
with tqdm(total=len(h_idx_list) * len(w_idx_list), desc="ScuNET tiles") as pbar:
for h_idx in h_idx_list:
for w_idx in w_idx_list:
in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile]
out_patch = model(in_patch)
out_patch_mask = torch.ones_like(out_patch)
E[
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
].add_(out_patch)
W[
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
].add_(out_patch_mask)
pbar.update(1)
output = E.div_(W)
return output
def do_upscale(self, img: PIL.Image.Image, selected_file):
torch.cuda.empty_cache()
model = self.load_model(selected_file)
if model is None:
print(f"ScuNET: Unable to load model from {selected_file}", file=sys.stderr)
return img
device = devices.get_device_for('scunet')
img = np.array(img)
img = img[:, :, ::-1]
img = np.moveaxis(img, 2, 0) / 255
img = torch.from_numpy(img).float()
img = img.unsqueeze(0).to(device)
with torch.no_grad():
output = model(img)
output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
output = 255. * np.moveaxis(output, 0, 2)
output = output.astype(np.uint8)
output = output[:, :, ::-1]
tile = opts.SCUNET_tile
h, w = img.height, img.width
np_img = np.array(img)
np_img = np_img[:, :, ::-1] # RGB to BGR
np_img = np_img.transpose((2, 0, 1)) / 255 # HWC to CHW
torch_img = torch.from_numpy(np_img).float().unsqueeze(0).to(device) # type: ignore
if tile > h or tile > w:
_img = torch.zeros(1, 3, max(h, tile), max(w, tile), dtype=torch_img.dtype, device=torch_img.device)
_img[:, :, :h, :w] = torch_img # pad image
torch_img = _img
torch_output = self.tiled_inference(torch_img, model).squeeze(0)
torch_output = torch_output[:, :h * 1, :w * 1] # remove padding, if any
np_output: np.ndarray = torch_output.float().cpu().clamp_(0, 1).numpy()
del torch_img, torch_output
torch.cuda.empty_cache()
return PIL.Image.fromarray(output, 'RGB')
output = np_output.transpose((1, 2, 0)) # CHW to HWC
output = output[:, :, ::-1] # BGR to RGB
return PIL.Image.fromarray((output * 255).astype(np.uint8))
def load_model(self, path: str):
device = devices.get_device_for('scunet')
if "http" in path:
filename = load_file_from_url(url=self.model_url, model_dir=self.model_path, file_name="%s.pth" % self.name,
progress=True)
filename = load_file_from_url(url=self.model_url, model_dir=self.model_download_path, file_name="%s.pth" % self.name, progress=True)
else:
filename = path
if not os.path.exists(os.path.join(self.model_path, filename)) or filename is None:
......@@ -79,9 +131,19 @@ class UpscalerScuNET(modules.upscaler.Upscaler):
model = net(in_nc=3, config=[4, 4, 4, 4, 4, 4, 4], dim=64)
model.load_state_dict(torch.load(filename), strict=True)
model.eval()
for k, v in model.named_parameters():
for _, v in model.named_parameters():
v.requires_grad = False
model = model.to(device)
return model
def on_ui_settings():
import gradio as gr
from modules import shared
shared.opts.add_option("SCUNET_tile", shared.OptionInfo(256, "Tile size for SCUNET upscalers.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}, section=('upscaling', "Upscaling")).info("0 = no tiling"))
shared.opts.add_option("SCUNET_tile_overlap", shared.OptionInfo(8, "Tile overlap for SCUNET upscalers.", gr.Slider, {"minimum": 0, "maximum": 64, "step": 1}, section=('upscaling', "Upscaling")).info("Low values = visible seam"))
script_callbacks.on_ui_settings(on_ui_settings)
......@@ -61,7 +61,9 @@ class WMSA(nn.Module):
Returns:
output: tensor shape [b h w c]
"""
if self.type != 'W': x = torch.roll(x, shifts=(-(self.window_size // 2), -(self.window_size // 2)), dims=(1, 2))
if self.type != 'W':
x = torch.roll(x, shifts=(-(self.window_size // 2), -(self.window_size // 2)), dims=(1, 2))
x = rearrange(x, 'b (w1 p1) (w2 p2) c -> b w1 w2 p1 p2 c', p1=self.window_size, p2=self.window_size)
h_windows = x.size(1)
w_windows = x.size(2)
......@@ -85,8 +87,9 @@ class WMSA(nn.Module):
output = self.linear(output)
output = rearrange(output, 'b (w1 w2) (p1 p2) c -> b (w1 p1) (w2 p2) c', w1=h_windows, p1=self.window_size)
if self.type != 'W': output = torch.roll(output, shifts=(self.window_size // 2, self.window_size // 2),
dims=(1, 2))
if self.type != 'W':
output = torch.roll(output, shifts=(self.window_size // 2, self.window_size // 2), dims=(1, 2))
return output
def relative_embedding(self):
......@@ -262,4 +265,4 @@ class SCUNet(nn.Module):
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
\ No newline at end of file
nn.init.constant_(m.weight, 1.0)
import contextlib
import os
import numpy as np
......@@ -8,7 +7,7 @@ from basicsr.utils.download_util import load_file_from_url
from tqdm import tqdm
from modules import modelloader, devices, script_callbacks, shared
from modules.shared import cmd_opts, opts, state
from modules.shared import opts, state
from swinir_model_arch import SwinIR as net
from swinir_model_arch_v2 import Swin2SR as net2
from modules.upscaler import Upscaler, UpscalerData
......@@ -45,14 +44,14 @@ class UpscalerSwinIR(Upscaler):
img = upscale(img, model)
try:
torch.cuda.empty_cache()
except:
except Exception:
pass
return img
def load_model(self, path, scale=4):
if "http" in path:
dl_name = "%s%s" % (self.model_name.replace(" ", "_"), ".pth")
filename = load_file_from_url(url=path, model_dir=self.model_path, file_name=dl_name, progress=True)
filename = load_file_from_url(url=path, model_dir=self.model_download_path, file_name=dl_name, progress=True)
else:
filename = path
if filename is None or not os.path.exists(filename):
......@@ -151,7 +150,7 @@ def inference(img, model, tile, tile_overlap, window_size, scale):
for w_idx in w_idx_list:
if state.interrupted or state.skipped:
break
in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile]
out_patch = model(in_patch)
out_patch_mask = torch.ones_like(out_patch)
......
......@@ -644,7 +644,7 @@ class SwinIR(nn.Module):
"""
def __init__(self, img_size=64, patch_size=1, in_chans=3,
embed_dim=96, depths=[6, 6, 6, 6], num_heads=[6, 6, 6, 6],
embed_dim=96, depths=(6, 6, 6, 6), num_heads=(6, 6, 6, 6),
window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None,
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
......@@ -805,7 +805,7 @@ class SwinIR(nn.Module):
def forward(self, x):
H, W = x.shape[2:]
x = self.check_image_size(x)
self.mean = self.mean.type_as(x)
x = (x - self.mean) * self.img_range
......@@ -844,7 +844,7 @@ class SwinIR(nn.Module):
H, W = self.patches_resolution
flops += H * W * 3 * self.embed_dim * 9
flops += self.patch_embed.flops()
for i, layer in enumerate(self.layers):
for layer in self.layers:
flops += layer.flops()
flops += H * W * 3 * self.embed_dim * self.embed_dim
flops += self.upsample.flops()
......
......@@ -74,7 +74,7 @@ class WindowAttention(nn.Module):
"""
def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0.,
pretrained_window_size=[0, 0]):
pretrained_window_size=(0, 0)):
super().__init__()
self.dim = dim
......@@ -241,7 +241,7 @@ class SwinTransformerBlock(nn.Module):
attn_mask = None
self.register_buffer("attn_mask", attn_mask)
def calculate_mask(self, x_size):
# calculate attention mask for SW-MSA
H, W = x_size
......@@ -263,7 +263,7 @@ class SwinTransformerBlock(nn.Module):
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
return attn_mask
return attn_mask
def forward(self, x, x_size):
H, W = x_size
......@@ -288,7 +288,7 @@ class SwinTransformerBlock(nn.Module):
attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C
else:
attn_windows = self.attn(x_windows, mask=self.calculate_mask(x_size).to(x.device))
# merge windows
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
......@@ -369,7 +369,7 @@ class PatchMerging(nn.Module):
H, W = self.input_resolution
flops = (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim
flops += H * W * self.dim // 2
return flops
return flops
class BasicLayer(nn.Module):
""" A basic Swin Transformer layer for one stage.
......@@ -447,7 +447,7 @@ class BasicLayer(nn.Module):
nn.init.constant_(blk.norm1.weight, 0)
nn.init.constant_(blk.norm2.bias, 0)
nn.init.constant_(blk.norm2.weight, 0)
class PatchEmbed(nn.Module):
r""" Image to Patch Embedding
Args:
......@@ -492,7 +492,7 @@ class PatchEmbed(nn.Module):
flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
if self.norm is not None:
flops += Ho * Wo * self.embed_dim
return flops
return flops
class RSTB(nn.Module):
"""Residual Swin Transformer Block (RSTB).
......@@ -531,7 +531,7 @@ class RSTB(nn.Module):
num_heads=num_heads,
window_size=window_size,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qkv_bias=qkv_bias,
drop=drop, attn_drop=attn_drop,
drop_path=drop_path,
norm_layer=norm_layer,
......@@ -622,7 +622,7 @@ class Upsample(nn.Sequential):
else:
raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.')
super(Upsample, self).__init__(*m)
class Upsample_hf(nn.Sequential):
"""Upsample module.
......@@ -642,7 +642,7 @@ class Upsample_hf(nn.Sequential):
m.append(nn.PixelShuffle(3))
else:
raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.')
super(Upsample_hf, self).__init__(*m)
super(Upsample_hf, self).__init__(*m)
class UpsampleOneStep(nn.Sequential):
......@@ -667,8 +667,8 @@ class UpsampleOneStep(nn.Sequential):
H, W = self.input_resolution
flops = H * W * self.num_feat * 3 * 9
return flops
class Swin2SR(nn.Module):
r""" Swin2SR
......@@ -698,8 +698,8 @@ class Swin2SR(nn.Module):
"""
def __init__(self, img_size=64, patch_size=1, in_chans=3,
embed_dim=96, depths=[6, 6, 6, 6], num_heads=[6, 6, 6, 6],
window_size=7, mlp_ratio=4., qkv_bias=True,
embed_dim=96, depths=(6, 6, 6, 6), num_heads=(6, 6, 6, 6),
window_size=7, mlp_ratio=4., qkv_bias=True,
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
use_checkpoint=False, upscale=2, img_range=1., upsampler='', resi_connection='1conv',
......@@ -764,7 +764,7 @@ class Swin2SR(nn.Module):
num_heads=num_heads[i_layer],
window_size=window_size,
mlp_ratio=self.mlp_ratio,
qkv_bias=qkv_bias,
qkv_bias=qkv_bias,
drop=drop_rate, attn_drop=attn_drop_rate,
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], # no impact on SR results
norm_layer=norm_layer,
......@@ -776,7 +776,7 @@ class Swin2SR(nn.Module):
)
self.layers.append(layer)
if self.upsampler == 'pixelshuffle_hf':
self.layers_hf = nn.ModuleList()
for i_layer in range(self.num_layers):
......@@ -787,7 +787,7 @@ class Swin2SR(nn.Module):
num_heads=num_heads[i_layer],
window_size=window_size,
mlp_ratio=self.mlp_ratio,
qkv_bias=qkv_bias,
qkv_bias=qkv_bias,
drop=drop_rate, attn_drop=attn_drop_rate,
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], # no impact on SR results
norm_layer=norm_layer,
......@@ -799,7 +799,7 @@ class Swin2SR(nn.Module):
)
self.layers_hf.append(layer)
self.norm = norm_layer(self.num_features)
# build the last conv layer in deep feature extraction
......@@ -829,10 +829,10 @@ class Swin2SR(nn.Module):
self.conv_aux = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
self.conv_after_aux = nn.Sequential(
nn.Conv2d(3, num_feat, 3, 1, 1),
nn.LeakyReLU(inplace=True))
nn.LeakyReLU(inplace=True))
self.upsample = Upsample(upscale, num_feat)
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
elif self.upsampler == 'pixelshuffle_hf':
self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
nn.LeakyReLU(inplace=True))
......@@ -846,7 +846,7 @@ class Swin2SR(nn.Module):
nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
nn.LeakyReLU(inplace=True))
self.conv_last_hf = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
elif self.upsampler == 'pixelshuffledirect':
# for lightweight SR (to save parameters)
self.upsample = UpsampleOneStep(upscale, embed_dim, num_out_ch,
......@@ -905,7 +905,7 @@ class Swin2SR(nn.Module):
x = self.patch_unembed(x, x_size)
return x
def forward_features_hf(self, x):
x_size = (x.shape[2], x.shape[3])
x = self.patch_embed(x)
......@@ -919,7 +919,7 @@ class Swin2SR(nn.Module):
x = self.norm(x) # B L C
x = self.patch_unembed(x, x_size)
return x
return x
def forward(self, x):
H, W = x.shape[2:]
......@@ -951,7 +951,7 @@ class Swin2SR(nn.Module):
x = self.conv_after_body(self.forward_features(x)) + x
x_before = self.conv_before_upsample(x)
x_out = self.conv_last(self.upsample(x_before))
x_hf = self.conv_first_hf(x_before)
x_hf = self.conv_after_body_hf(self.forward_features_hf(x_hf)) + x_hf
x_hf = self.conv_before_upsample_hf(x_hf)
......@@ -977,15 +977,15 @@ class Swin2SR(nn.Module):
x_first = self.conv_first(x)
res = self.conv_after_body(self.forward_features(x_first)) + x_first
x = x + self.conv_last(res)
x = x / self.img_range + self.mean
if self.upsampler == "pixelshuffle_aux":
return x[:, :, :H*self.upscale, :W*self.upscale], aux
elif self.upsampler == "pixelshuffle_hf":
x_out = x_out / self.img_range + self.mean
return x_out[:, :, :H*self.upscale, :W*self.upscale], x[:, :, :H*self.upscale, :W*self.upscale], x_hf[:, :, :H*self.upscale, :W*self.upscale]
else:
return x[:, :, :H*self.upscale, :W*self.upscale]
......@@ -994,7 +994,7 @@ class Swin2SR(nn.Module):
H, W = self.patches_resolution
flops += H * W * 3 * self.embed_dim * 9
flops += self.patch_embed.flops()
for i, layer in enumerate(self.layers):
for layer in self.layers:
flops += layer.flops()
flops += H * W * 3 * self.embed_dim * self.embed_dim
flops += self.upsample.flops()
......@@ -1014,4 +1014,4 @@ if __name__ == '__main__':
x = torch.randn((1, 3, height, width))
x = model(x)
print(x.shape)
\ No newline at end of file
print(x.shape)
// Stable Diffusion WebUI - Bracket checker
// Version 1.0
// By Hingashi no Florin/Bwin4L
// By Hingashi no Florin/Bwin4L & @akx
// Counts open and closed brackets (round, square, curly) in the prompt and negative prompt text boxes in the txt2img and img2img tabs.
// If there's a mismatch, the keyword counter turns red and if you hover on it, a tooltip tells you what's wrong.
function checkBrackets(evt, textArea, counterElt) {
errorStringParen = '(...) - Different number of opening and closing parentheses detected.\n';
errorStringSquare = '[...] - Different number of opening and closing square brackets detected.\n';
errorStringCurly = '{...} - Different number of opening and closing curly brackets detected.\n';
openBracketRegExp = /\(/g;
closeBracketRegExp = /\)/g;
openSquareBracketRegExp = /\[/g;
closeSquareBracketRegExp = /\]/g;
openCurlyBracketRegExp = /\{/g;
closeCurlyBracketRegExp = /\}/g;
totalOpenBracketMatches = 0;
totalCloseBracketMatches = 0;
totalOpenSquareBracketMatches = 0;
totalCloseSquareBracketMatches = 0;
totalOpenCurlyBracketMatches = 0;
totalCloseCurlyBracketMatches = 0;
openBracketMatches = textArea.value.match(openBracketRegExp);
if(openBracketMatches) {
totalOpenBracketMatches = openBracketMatches.length;
}
closeBracketMatches = textArea.value.match(closeBracketRegExp);
if(closeBracketMatches) {
totalCloseBracketMatches = closeBracketMatches.length;
}
openSquareBracketMatches = textArea.value.match(openSquareBracketRegExp);
if(openSquareBracketMatches) {
totalOpenSquareBracketMatches = openSquareBracketMatches.length;
}
closeSquareBracketMatches = textArea.value.match(closeSquareBracketRegExp);
if(closeSquareBracketMatches) {
totalCloseSquareBracketMatches = closeSquareBracketMatches.length;
}
openCurlyBracketMatches = textArea.value.match(openCurlyBracketRegExp);
if(openCurlyBracketMatches) {
totalOpenCurlyBracketMatches = openCurlyBracketMatches.length;
}
closeCurlyBracketMatches = textArea.value.match(closeCurlyBracketRegExp);
if(closeCurlyBracketMatches) {
totalCloseCurlyBracketMatches = closeCurlyBracketMatches.length;
}
if(totalOpenBracketMatches != totalCloseBracketMatches) {
if(!counterElt.title.includes(errorStringParen)) {
counterElt.title += errorStringParen;
}
} else {
counterElt.title = counterElt.title.replace(errorStringParen, '');
}
if(totalOpenSquareBracketMatches != totalCloseSquareBracketMatches) {
if(!counterElt.title.includes(errorStringSquare)) {
counterElt.title += errorStringSquare;
}
} else {
counterElt.title = counterElt.title.replace(errorStringSquare, '');
}
if(totalOpenCurlyBracketMatches != totalCloseCurlyBracketMatches) {
if(!counterElt.title.includes(errorStringCurly)) {
counterElt.title += errorStringCurly;
function checkBrackets(textArea, counterElt) {
var counts = {};
(textArea.value.match(/[(){}[\]]/g) || []).forEach(bracket => {
counts[bracket] = (counts[bracket] || 0) + 1;
});
var errors = [];
function checkPair(open, close, kind) {
if (counts[open] !== counts[close]) {
errors.push(
`${open}...${close} - Detected ${counts[open] || 0} opening and ${counts[close] || 0} closing ${kind}.`
);
}
}
} else {
counterElt.title = counterElt.title.replace(errorStringCurly, '');
}
if(counterElt.title != '') {
counterElt.classList.add('error');
} else {
counterElt.classList.remove('error');
}
checkPair('(', ')', 'round brackets');
checkPair('[', ']', 'square brackets');
checkPair('{', '}', 'curly brackets');
counterElt.title = errors.join('\n');
counterElt.classList.toggle('error', errors.length !== 0);
}
function setupBracketChecking(id_prompt, id_counter){
function setupBracketChecking(id_prompt, id_counter) {
var textarea = gradioApp().querySelector("#" + id_prompt + " > label > textarea");
var counter = gradioApp().getElementById(id_counter)
var counter = gradioApp().getElementById(id_counter);
textarea.addEventListener("input", function(evt){
checkBrackets(evt, textarea, counter)
});
if (textarea && counter) {
textarea.addEventListener("input", () => checkBrackets(textarea, counter));
}
}
onUiLoaded(function(){
setupBracketChecking('txt2img_prompt', 'txt2img_token_counter')
setupBracketChecking('txt2img_neg_prompt', 'txt2img_negative_token_counter')
setupBracketChecking('img2img_prompt', 'img2img_token_counter')
setupBracketChecking('img2img_neg_prompt', 'img2img_negative_token_counter')
})
\ No newline at end of file
onUiLoaded(function() {
setupBracketChecking('txt2img_prompt', 'txt2img_token_counter');
setupBracketChecking('txt2img_neg_prompt', 'txt2img_negative_token_counter');
setupBracketChecking('img2img_prompt', 'img2img_token_counter');
setupBracketChecking('img2img_neg_prompt', 'img2img_negative_token_counter');
});
<div class='card' style={style} onclick={card_clicked}>
{background_image}
{metadata_button}
<div class='actions'>
<div class='additional'>
<ul>
<a href="#" title="replace preview image with currently selected in gallery" onclick={save_card_preview}>replace preview</a>
</ul>
<span style="display:none" class='search_term'>{search_term}</span>
<span style="display:none" class='search_term{search_only}'>{search_term}</span>
</div>
<span class='name'>{name}</span>
<span class='description'>{description}</span>
</div>
</div>
......@@ -661,4 +661,30 @@ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
</pre>
<h2><a href="https://github.com/madebyollin/taesd/blob/main/LICENSE">TAESD</a></h2>
<small>Tiny AutoEncoder for Stable Diffusion option for live previews</small>
<pre>
MIT License
Copyright (c) 2023 Ollin Boer Bohan
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
</pre>
\ No newline at end of file
let currentWidth = null;
let currentHeight = null;
let arFrameTimeout = setTimeout(function(){},0);
function dimensionChange(e, is_width, is_height){
if(is_width){
currentWidth = e.target.value*1.0
}
if(is_height){
currentHeight = e.target.value*1.0
}
var inImg2img = gradioApp().querySelector("#tab_img2img").style.display == "block";
if(!inImg2img){
return;
}
var targetElement = null;
var tabIndex = get_tab_index('mode_img2img')
if(tabIndex == 0){ // img2img
targetElement = gradioApp().querySelector('#img2img_image div[data-testid=image] img');
} else if(tabIndex == 1){ //Sketch
targetElement = gradioApp().querySelector('#img2img_sketch div[data-testid=image] img');
} else if(tabIndex == 2){ // Inpaint
targetElement = gradioApp().querySelector('#img2maskimg div[data-testid=image] img');
} else if(tabIndex == 3){ // Inpaint sketch
targetElement = gradioApp().querySelector('#inpaint_sketch div[data-testid=image] img');
}
if(targetElement){
var arPreviewRect = gradioApp().querySelector('#imageARPreview');
if(!arPreviewRect){
arPreviewRect = document.createElement('div')
arPreviewRect.id = "imageARPreview";
gradioApp().appendChild(arPreviewRect)
}
var viewportOffset = targetElement.getBoundingClientRect();
viewportscale = Math.min( targetElement.clientWidth/targetElement.naturalWidth, targetElement.clientHeight/targetElement.naturalHeight )
scaledx = targetElement.naturalWidth*viewportscale
scaledy = targetElement.naturalHeight*viewportscale
cleintRectTop = (viewportOffset.top+window.scrollY)
cleintRectLeft = (viewportOffset.left+window.scrollX)
cleintRectCentreY = cleintRectTop + (targetElement.clientHeight/2)
cleintRectCentreX = cleintRectLeft + (targetElement.clientWidth/2)
viewRectTop = cleintRectCentreY-(scaledy/2)
viewRectLeft = cleintRectCentreX-(scaledx/2)
arRectWidth = scaledx
arRectHeight = scaledy
arscale = Math.min( arRectWidth/currentWidth, arRectHeight/currentHeight )
arscaledx = currentWidth*arscale
arscaledy = currentHeight*arscale
arRectTop = cleintRectCentreY-(arscaledy/2)
arRectLeft = cleintRectCentreX-(arscaledx/2)
arRectWidth = arscaledx
arRectHeight = arscaledy
arPreviewRect.style.top = arRectTop+'px';
arPreviewRect.style.left = arRectLeft+'px';
arPreviewRect.style.width = arRectWidth+'px';
arPreviewRect.style.height = arRectHeight+'px';
clearTimeout(arFrameTimeout);
arFrameTimeout = setTimeout(function(){
arPreviewRect.style.display = 'none';
},2000);
arPreviewRect.style.display = 'block';
}
}
onUiUpdate(function(){
var arPreviewRect = gradioApp().querySelector('#imageARPreview');
if(arPreviewRect){
arPreviewRect.style.display = 'none';
}
var tabImg2img = gradioApp().querySelector("#tab_img2img");
if (tabImg2img) {
var inImg2img = tabImg2img.style.display == "block";
if(inImg2img){
let inputs = gradioApp().querySelectorAll('input');
inputs.forEach(function(e){
var is_width = e.parentElement.id == "img2img_width"
var is_height = e.parentElement.id == "img2img_height"
if((is_width || is_height) && !e.classList.contains('scrollwatch')){
e.addEventListener('input', function(e){dimensionChange(e, is_width, is_height)} )
e.classList.add('scrollwatch')
}
if(is_width){
currentWidth = e.value*1.0
}
if(is_height){
currentHeight = e.value*1.0
}
})
}
}
});
let currentWidth = null;
let currentHeight = null;
let arFrameTimeout = setTimeout(function() {}, 0);
function dimensionChange(e, is_width, is_height) {
if (is_width) {
currentWidth = e.target.value * 1.0;
}
if (is_height) {
currentHeight = e.target.value * 1.0;
}
var inImg2img = gradioApp().querySelector("#tab_img2img").style.display == "block";
if (!inImg2img) {
return;
}
var targetElement = null;
var tabIndex = get_tab_index('mode_img2img');
if (tabIndex == 0) { // img2img
targetElement = gradioApp().querySelector('#img2img_image div[data-testid=image] img');
} else if (tabIndex == 1) { //Sketch
targetElement = gradioApp().querySelector('#img2img_sketch div[data-testid=image] img');
} else if (tabIndex == 2) { // Inpaint
targetElement = gradioApp().querySelector('#img2maskimg div[data-testid=image] img');
} else if (tabIndex == 3) { // Inpaint sketch
targetElement = gradioApp().querySelector('#inpaint_sketch div[data-testid=image] img');
}
if (targetElement) {
var arPreviewRect = gradioApp().querySelector('#imageARPreview');
if (!arPreviewRect) {
arPreviewRect = document.createElement('div');
arPreviewRect.id = "imageARPreview";
gradioApp().appendChild(arPreviewRect);
}
var viewportOffset = targetElement.getBoundingClientRect();
var viewportscale = Math.min(targetElement.clientWidth / targetElement.naturalWidth, targetElement.clientHeight / targetElement.naturalHeight);
var scaledx = targetElement.naturalWidth * viewportscale;
var scaledy = targetElement.naturalHeight * viewportscale;
var cleintRectTop = (viewportOffset.top + window.scrollY);
var cleintRectLeft = (viewportOffset.left + window.scrollX);
var cleintRectCentreY = cleintRectTop + (targetElement.clientHeight / 2);
var cleintRectCentreX = cleintRectLeft + (targetElement.clientWidth / 2);
var arscale = Math.min(scaledx / currentWidth, scaledy / currentHeight);
var arscaledx = currentWidth * arscale;
var arscaledy = currentHeight * arscale;
var arRectTop = cleintRectCentreY - (arscaledy / 2);
var arRectLeft = cleintRectCentreX - (arscaledx / 2);
var arRectWidth = arscaledx;
var arRectHeight = arscaledy;
arPreviewRect.style.top = arRectTop + 'px';
arPreviewRect.style.left = arRectLeft + 'px';
arPreviewRect.style.width = arRectWidth + 'px';
arPreviewRect.style.height = arRectHeight + 'px';
clearTimeout(arFrameTimeout);
arFrameTimeout = setTimeout(function() {
arPreviewRect.style.display = 'none';
}, 2000);
arPreviewRect.style.display = 'block';
}
}
onUiUpdate(function() {
var arPreviewRect = gradioApp().querySelector('#imageARPreview');
if (arPreviewRect) {
arPreviewRect.style.display = 'none';
}
var tabImg2img = gradioApp().querySelector("#tab_img2img");
if (tabImg2img) {
var inImg2img = tabImg2img.style.display == "block";
if (inImg2img) {
let inputs = gradioApp().querySelectorAll('input');
inputs.forEach(function(e) {
var is_width = e.parentElement.id == "img2img_width";
var is_height = e.parentElement.id == "img2img_height";
if ((is_width || is_height) && !e.classList.contains('scrollwatch')) {
e.addEventListener('input', function(e) {
dimensionChange(e, is_width, is_height);
});
e.classList.add('scrollwatch');
}
if (is_width) {
currentWidth = e.value * 1.0;
}
if (is_height) {
currentHeight = e.value * 1.0;
}
});
}
}
});
This diff is collapsed.
// allows drag-dropping files into gradio image elements, and also pasting images from clipboard
function isValidImageList( files ) {
function isValidImageList(files) {
return files && files?.length === 1 && ['image/png', 'image/gif', 'image/jpeg'].includes(files[0].type);
}
function dropReplaceImage( imgWrap, files ) {
if ( ! isValidImageList( files ) ) {
function dropReplaceImage(imgWrap, files) {
if (!isValidImageList(files)) {
return;
}
......@@ -14,44 +14,44 @@ function dropReplaceImage( imgWrap, files ) {
imgWrap.querySelector('.modify-upload button + button, .touch-none + div button + button')?.click();
const callback = () => {
const fileInput = imgWrap.querySelector('input[type="file"]');
if ( fileInput ) {
if ( files.length === 0 ) {
if (fileInput) {
if (files.length === 0) {
files = new DataTransfer();
files.items.add(tmpFile);
fileInput.files = files.files;
} else {
fileInput.files = files;
}
fileInput.dispatchEvent(new Event('change'));
fileInput.dispatchEvent(new Event('change'));
}
};
if ( imgWrap.closest('#pnginfo_image') ) {
if (imgWrap.closest('#pnginfo_image')) {
// special treatment for PNG Info tab, wait for fetch request to finish
const oldFetch = window.fetch;
window.fetch = async (input, options) => {
window.fetch = async(input, options) => {
const response = await oldFetch(input, options);
if ( 'api/predict/' === input ) {
if ('api/predict/' === input) {
const content = await response.text();
window.fetch = oldFetch;
window.requestAnimationFrame( () => callback() );
window.requestAnimationFrame(() => callback());
return new Response(content, {
status: response.status,
statusText: response.statusText,
headers: response.headers
})
});
}
return response;
};
};
} else {
window.requestAnimationFrame( () => callback() );
window.requestAnimationFrame(() => callback());
}
}
window.document.addEventListener('dragover', e => {
const target = e.composedPath()[0];
const imgWrap = target.closest('[data-testid="image"]');
if ( !imgWrap && target.placeholder && target.placeholder.indexOf("Prompt") == -1) {
if (!imgWrap && target.placeholder && target.placeholder.indexOf("Prompt") == -1) {
return;
}
e.stopPropagation();
......@@ -65,33 +65,37 @@ window.document.addEventListener('drop', e => {
return;
}
const imgWrap = target.closest('[data-testid="image"]');
if ( !imgWrap ) {
if (!imgWrap) {
return;
}
e.stopPropagation();
e.preventDefault();
const files = e.dataTransfer.files;
dropReplaceImage( imgWrap, files );
dropReplaceImage(imgWrap, files);
});
window.addEventListener('paste', e => {
const files = e.clipboardData.files;
if ( ! isValidImageList( files ) ) {
if (!isValidImageList(files)) {
return;
}
const visibleImageFields = [...gradioApp().querySelectorAll('[data-testid="image"]')]
.filter(el => uiElementIsVisible(el));
if ( ! visibleImageFields.length ) {
.filter(el => uiElementIsVisible(el))
.sort((a, b) => uiElementInSight(b) - uiElementInSight(a));
if (!visibleImageFields.length) {
return;
}
const firstFreeImageField = visibleImageFields
.filter(el => el.querySelector('input[type=file]'))?.[0];
dropReplaceImage(
firstFreeImageField ?
firstFreeImageField :
visibleImageFields[visibleImageFields.length - 1]
, files );
firstFreeImageField :
visibleImageFields[visibleImageFields.length - 1]
, files
);
});
function keyupEditAttention(event){
let target = event.originalTarget || event.composedPath()[0];
if (! target.matches("[id*='_toprow'] [id*='_prompt'] textarea")) return;
if (! (event.metaKey || event.ctrlKey)) return;
let isPlus = event.key == "ArrowUp"
let isMinus = event.key == "ArrowDown"
if (!isPlus && !isMinus) return;
let selectionStart = target.selectionStart;
let selectionEnd = target.selectionEnd;
let text = target.value;
function selectCurrentParenthesisBlock(OPEN, CLOSE){
if (selectionStart !== selectionEnd) return false;
// Find opening parenthesis around current cursor
const before = text.substring(0, selectionStart);
let beforeParen = before.lastIndexOf(OPEN);
if (beforeParen == -1) return false;
let beforeParenClose = before.lastIndexOf(CLOSE);
while (beforeParenClose !== -1 && beforeParenClose > beforeParen) {
beforeParen = before.lastIndexOf(OPEN, beforeParen - 1);
beforeParenClose = before.lastIndexOf(CLOSE, beforeParenClose - 1);
}
// Find closing parenthesis around current cursor
const after = text.substring(selectionStart);
let afterParen = after.indexOf(CLOSE);
if (afterParen == -1) return false;
let afterParenOpen = after.indexOf(OPEN);
while (afterParenOpen !== -1 && afterParen > afterParenOpen) {
afterParen = after.indexOf(CLOSE, afterParen + 1);
afterParenOpen = after.indexOf(OPEN, afterParenOpen + 1);
}
if (beforeParen === -1 || afterParen === -1) return false;
// Set the selection to the text between the parenthesis
const parenContent = text.substring(beforeParen + 1, selectionStart + afterParen);
const lastColon = parenContent.lastIndexOf(":");
selectionStart = beforeParen + 1;
selectionEnd = selectionStart + lastColon;
target.setSelectionRange(selectionStart, selectionEnd);
return true;
}
// If the user hasn't selected anything, let's select their current parenthesis block
if(! selectCurrentParenthesisBlock('<', '>')){
selectCurrentParenthesisBlock('(', ')')
}
event.preventDefault();
closeCharacter = ')'
delta = opts.keyedit_precision_attention
if (selectionStart > 0 && text[selectionStart - 1] == '<'){
closeCharacter = '>'
delta = opts.keyedit_precision_extra
} else if (selectionStart == 0 || text[selectionStart - 1] != "(") {
// do not include spaces at the end
while(selectionEnd > selectionStart && text[selectionEnd-1] == ' '){
selectionEnd -= 1;
}
if(selectionStart == selectionEnd){
return
}
text = text.slice(0, selectionStart) + "(" + text.slice(selectionStart, selectionEnd) + ":1.0)" + text.slice(selectionEnd);
selectionStart += 1;
selectionEnd += 1;
}
end = text.slice(selectionEnd + 1).indexOf(closeCharacter) + 1;
weight = parseFloat(text.slice(selectionEnd + 1, selectionEnd + 1 + end));
if (isNaN(weight)) return;
weight += isPlus ? delta : -delta;
weight = parseFloat(weight.toPrecision(12));
if(String(weight).length == 1) weight += ".0"
text = text.slice(0, selectionEnd + 1) + weight + text.slice(selectionEnd + 1 + end - 1);
target.focus();
target.value = text;
target.selectionStart = selectionStart;
target.selectionEnd = selectionEnd;
updateInput(target)
}
addEventListener('keydown', (event) => {
keyupEditAttention(event);
});
\ No newline at end of file
function keyupEditAttention(event) {
let target = event.originalTarget || event.composedPath()[0];
if (!target.matches("*:is([id*='_toprow'] [id*='_prompt'], .prompt) textarea")) return;
if (!(event.metaKey || event.ctrlKey)) return;
let isPlus = event.key == "ArrowUp";
let isMinus = event.key == "ArrowDown";
if (!isPlus && !isMinus) return;
let selectionStart = target.selectionStart;
let selectionEnd = target.selectionEnd;
let text = target.value;
function selectCurrentParenthesisBlock(OPEN, CLOSE) {
if (selectionStart !== selectionEnd) return false;
// Find opening parenthesis around current cursor
const before = text.substring(0, selectionStart);
let beforeParen = before.lastIndexOf(OPEN);
if (beforeParen == -1) return false;
let beforeParenClose = before.lastIndexOf(CLOSE);
while (beforeParenClose !== -1 && beforeParenClose > beforeParen) {
beforeParen = before.lastIndexOf(OPEN, beforeParen - 1);
beforeParenClose = before.lastIndexOf(CLOSE, beforeParenClose - 1);
}
// Find closing parenthesis around current cursor
const after = text.substring(selectionStart);
let afterParen = after.indexOf(CLOSE);
if (afterParen == -1) return false;
let afterParenOpen = after.indexOf(OPEN);
while (afterParenOpen !== -1 && afterParen > afterParenOpen) {
afterParen = after.indexOf(CLOSE, afterParen + 1);
afterParenOpen = after.indexOf(OPEN, afterParenOpen + 1);
}
if (beforeParen === -1 || afterParen === -1) return false;
// Set the selection to the text between the parenthesis
const parenContent = text.substring(beforeParen + 1, selectionStart + afterParen);
const lastColon = parenContent.lastIndexOf(":");
selectionStart = beforeParen + 1;
selectionEnd = selectionStart + lastColon;
target.setSelectionRange(selectionStart, selectionEnd);
return true;
}
function selectCurrentWord() {
if (selectionStart !== selectionEnd) return false;
const delimiters = opts.keyedit_delimiters + " \r\n\t";
// seek backward until to find beggining
while (!delimiters.includes(text[selectionStart - 1]) && selectionStart > 0) {
selectionStart--;
}
// seek forward to find end
while (!delimiters.includes(text[selectionEnd]) && selectionEnd < text.length) {
selectionEnd++;
}
target.setSelectionRange(selectionStart, selectionEnd);
return true;
}
// If the user hasn't selected anything, let's select their current parenthesis block or word
if (!selectCurrentParenthesisBlock('<', '>') && !selectCurrentParenthesisBlock('(', ')')) {
selectCurrentWord();
}
event.preventDefault();
var closeCharacter = ')';
var delta = opts.keyedit_precision_attention;
if (selectionStart > 0 && text[selectionStart - 1] == '<') {
closeCharacter = '>';
delta = opts.keyedit_precision_extra;
} else if (selectionStart == 0 || text[selectionStart - 1] != "(") {
// do not include spaces at the end
while (selectionEnd > selectionStart && text[selectionEnd - 1] == ' ') {
selectionEnd -= 1;
}
if (selectionStart == selectionEnd) {
return;
}
text = text.slice(0, selectionStart) + "(" + text.slice(selectionStart, selectionEnd) + ":1.0)" + text.slice(selectionEnd);
selectionStart += 1;
selectionEnd += 1;
}
var end = text.slice(selectionEnd + 1).indexOf(closeCharacter) + 1;
var weight = parseFloat(text.slice(selectionEnd + 1, selectionEnd + 1 + end));
if (isNaN(weight)) return;
weight += isPlus ? delta : -delta;
weight = parseFloat(weight.toPrecision(12));
if (String(weight).length == 1) weight += ".0";
if (closeCharacter == ')' && weight == 1) {
text = text.slice(0, selectionStart - 1) + text.slice(selectionStart, selectionEnd) + text.slice(selectionEnd + 5);
selectionStart--;
selectionEnd--;
} else {
text = text.slice(0, selectionEnd + 1) + weight + text.slice(selectionEnd + 1 + end - 1);
}
target.focus();
target.value = text;
target.selectionStart = selectionStart;
target.selectionEnd = selectionEnd;
updateInput(target);
}
addEventListener('keydown', (event) => {
keyupEditAttention(event);
});
function extensions_apply(_, _, disable_all){
var disable = []
var update = []
gradioApp().querySelectorAll('#extensions input[type="checkbox"]').forEach(function(x){
if(x.name.startsWith("enable_") && ! x.checked)
disable.push(x.name.substr(7))
if(x.name.startsWith("update_") && x.checked)
update.push(x.name.substr(7))
})
restart_reload()
return [JSON.stringify(disable), JSON.stringify(update), disable_all]
}
function extensions_check(_, _){
var disable = []
gradioApp().querySelectorAll('#extensions input[type="checkbox"]').forEach(function(x){
if(x.name.startsWith("enable_") && ! x.checked)
disable.push(x.name.substr(7))
})
gradioApp().querySelectorAll('#extensions .extension_status').forEach(function(x){
x.innerHTML = "Loading..."
})
var id = randomId()
requestProgress(id, gradioApp().getElementById('extensions_installed_top'), null, function(){
})
return [id, JSON.stringify(disable)]
}
function install_extension_from_index(button, url){
button.disabled = "disabled"
button.value = "Installing..."
textarea = gradioApp().querySelector('#extension_to_install textarea')
textarea.value = url
updateInput(textarea)
gradioApp().querySelector('#install_extension_button').click()
}
function extensions_apply(_disabled_list, _update_list, disable_all) {
var disable = [];
var update = [];
gradioApp().querySelectorAll('#extensions input[type="checkbox"]').forEach(function(x) {
if (x.name.startsWith("enable_") && !x.checked) {
disable.push(x.name.substring(7));
}
if (x.name.startsWith("update_") && x.checked) {
update.push(x.name.substring(7));
}
});
restart_reload();
return [JSON.stringify(disable), JSON.stringify(update), disable_all];
}
function extensions_check() {
var disable = [];
gradioApp().querySelectorAll('#extensions input[type="checkbox"]').forEach(function(x) {
if (x.name.startsWith("enable_") && !x.checked) {
disable.push(x.name.substring(7));
}
});
gradioApp().querySelectorAll('#extensions .extension_status').forEach(function(x) {
x.innerHTML = "Loading...";
});
var id = randomId();
requestProgress(id, gradioApp().getElementById('extensions_installed_top'), null, function() {
});
return [id, JSON.stringify(disable)];
}
function install_extension_from_index(button, url) {
button.disabled = "disabled";
button.value = "Installing...";
var textarea = gradioApp().querySelector('#extension_to_install textarea');
textarea.value = url;
updateInput(textarea);
gradioApp().querySelector('#install_extension_button').click();
}
function config_state_confirm_restore(_, config_state_name, config_restore_type) {
if (config_state_name == "Current") {
return [false, config_state_name, config_restore_type];
}
let restored = "";
if (config_restore_type == "extensions") {
restored = "all saved extension versions";
} else if (config_restore_type == "webui") {
restored = "the webui version";
} else {
restored = "the webui version and all saved extension versions";
}
let confirmed = confirm("Are you sure you want to restore from this state?\nThis will reset " + restored + ".");
if (confirmed) {
restart_reload();
gradioApp().querySelectorAll('#extensions .extension_status').forEach(function(x) {
x.innerHTML = "Loading...";
});
}
return [confirmed, config_state_name, config_restore_type];
}
This diff is collapsed.
// attaches listeners to the txt2img and img2img galleries to update displayed generation param text when the image changes
let txt2img_gallery, img2img_gallery, modal = undefined;
onUiUpdate(function(){
if (!txt2img_gallery) {
txt2img_gallery = attachGalleryListeners("txt2img")
}
if (!img2img_gallery) {
img2img_gallery = attachGalleryListeners("img2img")
}
if (!modal) {
modal = gradioApp().getElementById('lightboxModal')
modalObserver.observe(modal, { attributes : true, attributeFilter : ['style'] });
}
onUiUpdate(function() {
if (!txt2img_gallery) {
txt2img_gallery = attachGalleryListeners("txt2img");
}
if (!img2img_gallery) {
img2img_gallery = attachGalleryListeners("img2img");
}
if (!modal) {
modal = gradioApp().getElementById('lightboxModal');
modalObserver.observe(modal, {attributes: true, attributeFilter: ['style']});
}
});
let modalObserver = new MutationObserver(function(mutations) {
mutations.forEach(function(mutationRecord) {
let selectedTab = gradioApp().querySelector('#tabs div button.bg-white')?.innerText
if (mutationRecord.target.style.display === 'none' && selectedTab === 'txt2img' || selectedTab === 'img2img')
gradioApp().getElementById(selectedTab+"_generation_info_button").click()
});
mutations.forEach(function(mutationRecord) {
let selectedTab = gradioApp().querySelector('#tabs div button.selected')?.innerText;
if (mutationRecord.target.style.display === 'none' && (selectedTab === 'txt2img' || selectedTab === 'img2img')) {
gradioApp().getElementById(selectedTab + "_generation_info_button")?.click();
}
});
});
function attachGalleryListeners(tab_name) {
gallery = gradioApp().querySelector('#'+tab_name+'_gallery')
gallery?.addEventListener('click', () => gradioApp().getElementById(tab_name+"_generation_info_button").click());
gallery?.addEventListener('keydown', (e) => {
if (e.keyCode == 37 || e.keyCode == 39) // left or right arrow
gradioApp().getElementById(tab_name+"_generation_info_button").click()
});
return gallery;
var gallery = gradioApp().querySelector('#' + tab_name + '_gallery');
gallery?.addEventListener('click', () => gradioApp().getElementById(tab_name + "_generation_info_button").click());
gallery?.addEventListener('keydown', (e) => {
if (e.keyCode == 37 || e.keyCode == 39) { // left or right arrow
gradioApp().getElementById(tab_name + "_generation_info_button").click();
}
});
return gallery;
}
This diff is collapsed.
function setInactive(elem, inactive){
if(inactive){
elem.classList.add('inactive')
} else{
elem.classList.remove('inactive')
}
}
function onCalcResolutionHires(enable, width, height, hr_scale, hr_resize_x, hr_resize_y){
hrUpscaleBy = gradioApp().getElementById('txt2img_hr_scale')
hrResizeX = gradioApp().getElementById('txt2img_hr_resize_x')
hrResizeY = gradioApp().getElementById('txt2img_hr_resize_y')
gradioApp().getElementById('txt2img_hires_fix_row2').style.display = opts.use_old_hires_fix_width_height ? "none" : ""
setInactive(hrUpscaleBy, opts.use_old_hires_fix_width_height || hr_resize_x > 0 || hr_resize_y > 0)
setInactive(hrResizeX, opts.use_old_hires_fix_width_height || hr_resize_x == 0)
setInactive(hrResizeY, opts.use_old_hires_fix_width_height || hr_resize_y == 0)
return [enable, width, height, hr_scale, hr_resize_x, hr_resize_y]
}
function onCalcResolutionHires(enable, width, height, hr_scale, hr_resize_x, hr_resize_y) {
function setInactive(elem, inactive) {
elem.classList.toggle('inactive', !!inactive);
}
var hrUpscaleBy = gradioApp().getElementById('txt2img_hr_scale');
var hrResizeX = gradioApp().getElementById('txt2img_hr_resize_x');
var hrResizeY = gradioApp().getElementById('txt2img_hr_resize_y');
gradioApp().getElementById('txt2img_hires_fix_row2').style.display = opts.use_old_hires_fix_width_height ? "none" : "";
setInactive(hrUpscaleBy, opts.use_old_hires_fix_width_height || hr_resize_x > 0 || hr_resize_y > 0);
setInactive(hrResizeX, opts.use_old_hires_fix_width_height || hr_resize_x == 0);
setInactive(hrResizeY, opts.use_old_hires_fix_width_height || hr_resize_y == 0);
return [enable, width, height, hr_scale, hr_resize_x, hr_resize_y];
}
......@@ -2,20 +2,18 @@
* temporary fix for https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/668
* @see https://github.com/gradio-app/gradio/issues/1721
*/
window.addEventListener( 'resize', () => imageMaskResize());
function imageMaskResize() {
const canvases = gradioApp().querySelectorAll('#img2maskimg .touch-none canvas');
if ( ! canvases.length ) {
canvases_fixed = false;
window.removeEventListener( 'resize', imageMaskResize );
return;
if (!canvases.length) {
window.removeEventListener('resize', imageMaskResize);
return;
}
const wrapper = canvases[0].closest('.touch-none');
const previewImage = wrapper.previousElementSibling;
if ( ! previewImage.complete ) {
previewImage.addEventListener( 'load', () => imageMaskResize());
if (!previewImage.complete) {
previewImage.addEventListener('load', imageMaskResize);
return;
}
......@@ -24,22 +22,22 @@ function imageMaskResize() {
const nw = previewImage.naturalWidth;
const nh = previewImage.naturalHeight;
const portrait = nh > nw;
const factor = portrait;
const wW = Math.min(w, portrait ? h/nh*nw : w/nw*nw);
const wH = Math.min(h, portrait ? h/nh*nh : w/nw*nh);
const wW = Math.min(w, portrait ? h / nh * nw : w / nw * nw);
const wH = Math.min(h, portrait ? h / nh * nh : w / nw * nh);
wrapper.style.width = `${wW}px`;
wrapper.style.height = `${wH}px`;
wrapper.style.left = `0px`;
wrapper.style.top = `0px`;
canvases.forEach( c => {
canvases.forEach(c => {
c.style.width = c.style.height = '';
c.style.maxWidth = '100%';
c.style.maxHeight = '100%';
c.style.objectFit = 'contain';
});
}
onUiUpdate(() => imageMaskResize());
}
onUiUpdate(imageMaskResize);
window.addEventListener('resize', imageMaskResize);
window.onload = (function(){
window.onload = (function() {
window.addEventListener('drop', e => {
const target = e.composedPath()[0];
const idx = selected_gallery_index();
if (target.placeholder.indexOf("Prompt") == -1) return;
let prompt_target = get_tab_index('tabs') == 1 ? "img2img_prompt_image" : "txt2img_prompt_image";
......@@ -11,7 +10,7 @@ window.onload = (function(){
const imgParent = gradioApp().getElementById(prompt_target);
const files = e.dataTransfer.files;
const fileInput = imgParent.querySelector('input[type="file"]');
if ( fileInput ) {
if (fileInput) {
fileInput.files = files;
fileInput.dispatchEvent(new Event('change'));
}
......
This diff is collapsed.
window.addEventListener('gamepadconnected', (e) => {
const index = e.gamepad.index;
let isWaiting = false;
setInterval(async() => {
if (!opts.js_modal_lightbox_gamepad || isWaiting) return;
const gamepad = navigator.getGamepads()[index];
const xValue = gamepad.axes[0];
if (xValue <= -0.3) {
modalPrevImage(e);
isWaiting = true;
} else if (xValue >= 0.3) {
modalNextImage(e);
isWaiting = true;
}
if (isWaiting) {
await sleepUntil(() => {
const xValue = navigator.getGamepads()[index].axes[0];
if (xValue < 0.3 && xValue > -0.3) {
return true;
}
}, opts.js_modal_lightbox_gamepad_repeat);
isWaiting = false;
}
}, 10);
});
/*
Primarily for vr controller type pointer devices.
I use the wheel event because there's currently no way to do it properly with web xr.
*/
let isScrolling = false;
window.addEventListener('wheel', (e) => {
if (!opts.js_modal_lightbox_gamepad || isScrolling) return;
isScrolling = true;
if (e.deltaX <= -0.6) {
modalPrevImage(e);
} else if (e.deltaX >= 0.6) {
modalNextImage(e);
}
setTimeout(() => {
isScrolling = false;
}, opts.js_modal_lightbox_gamepad_repeat);
});
function sleepUntil(f, timeout) {
return new Promise((resolve) => {
const timeStart = new Date();
const wait = setInterval(function() {
if (f() || new Date() - timeStart > timeout) {
clearInterval(wait);
resolve();
}
}, 20);
});
}
// localization = {} -- the dict with translations is created by the backend
ignore_ids_for_localization={
setting_sd_hypernetwork: 'OPTION',
setting_sd_model_checkpoint: 'OPTION',
setting_realesrgan_enabled_models: 'OPTION',
modelmerger_primary_model_name: 'OPTION',
modelmerger_secondary_model_name: 'OPTION',
modelmerger_tertiary_model_name: 'OPTION',
train_embedding: 'OPTION',
train_hypernetwork: 'OPTION',
txt2img_styles: 'OPTION',
img2img_styles: 'OPTION',
setting_random_artist_categories: 'SPAN',
setting_face_restoration_model: 'SPAN',
setting_realesrgan_enabled_models: 'SPAN',
extras_upscaler_1: 'SPAN',
extras_upscaler_2: 'SPAN',
}
re_num = /^[\.\d]+$/
re_emoji = /[\p{Extended_Pictographic}\u{1F3FB}-\u{1F3FF}\u{1F9B0}-\u{1F9B3}]/u
original_lines = {}
translated_lines = {}
function textNodesUnder(el){
var n, a=[], walk=document.createTreeWalker(el,NodeFilter.SHOW_TEXT,null,false);
while(n=walk.nextNode()) a.push(n);
return a;
}
function canBeTranslated(node, text){
if(! text) return false;
if(! node.parentElement) return false;
parentType = node.parentElement.nodeName
if(parentType=='SCRIPT' || parentType=='STYLE' || parentType=='TEXTAREA') return false;
if (parentType=='OPTION' || parentType=='SPAN'){
pnode = node
for(var level=0; level<4; level++){
pnode = pnode.parentElement
if(! pnode) break;
if(ignore_ids_for_localization[pnode.id] == parentType) return false;
}
}
if(re_num.test(text)) return false;
if(re_emoji.test(text)) return false;
return true
}
function getTranslation(text){
if(! text) return undefined
if(translated_lines[text] === undefined){
original_lines[text] = 1
}
tl = localization[text]
if(tl !== undefined){
translated_lines[tl] = 1
}
return tl
}
function processTextNode(node){
text = node.textContent.trim()
if(! canBeTranslated(node, text)) return
tl = getTranslation(text)
if(tl !== undefined){
node.textContent = tl
}
}
function processNode(node){
if(node.nodeType == 3){
processTextNode(node)
return
}
if(node.title){
tl = getTranslation(node.title)
if(tl !== undefined){
node.title = tl
}
}
if(node.placeholder){
tl = getTranslation(node.placeholder)
if(tl !== undefined){
node.placeholder = tl
}
}
textNodesUnder(node).forEach(function(node){
processTextNode(node)
})
}
function dumpTranslations(){
dumped = {}
if (localization.rtl) {
dumped.rtl = true
}
Object.keys(original_lines).forEach(function(text){
if(dumped[text] !== undefined) return
dumped[text] = localization[text] || text
})
return dumped
}
onUiUpdate(function(m){
m.forEach(function(mutation){
mutation.addedNodes.forEach(function(node){
processNode(node)
})
});
})
document.addEventListener("DOMContentLoaded", function() {
processNode(gradioApp())
if (localization.rtl) { // if the language is from right to left,
(new MutationObserver((mutations, observer) => { // wait for the style to load
mutations.forEach(mutation => {
mutation.addedNodes.forEach(node => {
if (node.tagName === 'STYLE') {
observer.disconnect();
for (const x of node.sheet.rules) { // find all rtl media rules
if (Array.from(x.media || []).includes('rtl')) {
x.media.appendMedium('all'); // enable them
}
}
}
})
});
})).observe(gradioApp(), { childList: true });
}
})
function download_localization() {
text = JSON.stringify(dumpTranslations(), null, 4)
var element = document.createElement('a');
element.setAttribute('href', 'data:text/plain;charset=utf-8,' + encodeURIComponent(text));
element.setAttribute('download', "localization.json");
element.style.display = 'none';
document.body.appendChild(element);
element.click();
document.body.removeChild(element);
}
// localization = {} -- the dict with translations is created by the backend
var ignore_ids_for_localization = {
setting_sd_hypernetwork: 'OPTION',
setting_sd_model_checkpoint: 'OPTION',
modelmerger_primary_model_name: 'OPTION',
modelmerger_secondary_model_name: 'OPTION',
modelmerger_tertiary_model_name: 'OPTION',
train_embedding: 'OPTION',
train_hypernetwork: 'OPTION',
txt2img_styles: 'OPTION',
img2img_styles: 'OPTION',
setting_random_artist_categories: 'SPAN',
setting_face_restoration_model: 'SPAN',
setting_realesrgan_enabled_models: 'SPAN',
extras_upscaler_1: 'SPAN',
extras_upscaler_2: 'SPAN',
};
var re_num = /^[.\d]+$/;
var re_emoji = /[\p{Extended_Pictographic}\u{1F3FB}-\u{1F3FF}\u{1F9B0}-\u{1F9B3}]/u;
var original_lines = {};
var translated_lines = {};
function hasLocalization() {
return window.localization && Object.keys(window.localization).length > 0;
}
function textNodesUnder(el) {
var n, a = [], walk = document.createTreeWalker(el, NodeFilter.SHOW_TEXT, null, false);
while ((n = walk.nextNode())) a.push(n);
return a;
}
function canBeTranslated(node, text) {
if (!text) return false;
if (!node.parentElement) return false;
var parentType = node.parentElement.nodeName;
if (parentType == 'SCRIPT' || parentType == 'STYLE' || parentType == 'TEXTAREA') return false;
if (parentType == 'OPTION' || parentType == 'SPAN') {
var pnode = node;
for (var level = 0; level < 4; level++) {
pnode = pnode.parentElement;
if (!pnode) break;
if (ignore_ids_for_localization[pnode.id] == parentType) return false;
}
}
if (re_num.test(text)) return false;
if (re_emoji.test(text)) return false;
return true;
}
function getTranslation(text) {
if (!text) return undefined;
if (translated_lines[text] === undefined) {
original_lines[text] = 1;
}
var tl = localization[text];
if (tl !== undefined) {
translated_lines[tl] = 1;
}
return tl;
}
function processTextNode(node) {
var text = node.textContent.trim();
if (!canBeTranslated(node, text)) return;
var tl = getTranslation(text);
if (tl !== undefined) {
node.textContent = tl;
}
}
function processNode(node) {
if (node.nodeType == 3) {
processTextNode(node);
return;
}
if (node.title) {
let tl = getTranslation(node.title);
if (tl !== undefined) {
node.title = tl;
}
}
if (node.placeholder) {
let tl = getTranslation(node.placeholder);
if (tl !== undefined) {
node.placeholder = tl;
}
}
textNodesUnder(node).forEach(function(node) {
processTextNode(node);
});
}
function dumpTranslations() {
if (!hasLocalization()) {
// If we don't have any localization,
// we will not have traversed the app to find
// original_lines, so do that now.
processNode(gradioApp());
}
var dumped = {};
if (localization.rtl) {
dumped.rtl = true;
}
for (const text in original_lines) {
if (dumped[text] !== undefined) continue;
dumped[text] = localization[text] || text;
}
return dumped;
}
function download_localization() {
var text = JSON.stringify(dumpTranslations(), null, 4);
var element = document.createElement('a');
element.setAttribute('href', 'data:text/plain;charset=utf-8,' + encodeURIComponent(text));
element.setAttribute('download', "localization.json");
element.style.display = 'none';
document.body.appendChild(element);
element.click();
document.body.removeChild(element);
}
document.addEventListener("DOMContentLoaded", function() {
if (!hasLocalization()) {
return;
}
onUiUpdate(function(m) {
m.forEach(function(mutation) {
mutation.addedNodes.forEach(function(node) {
processNode(node);
});
});
});
processNode(gradioApp());
if (localization.rtl) { // if the language is from right to left,
(new MutationObserver((mutations, observer) => { // wait for the style to load
mutations.forEach(mutation => {
mutation.addedNodes.forEach(node => {
if (node.tagName === 'STYLE') {
observer.disconnect();
for (const x of node.sheet.rules) { // find all rtl media rules
if (Array.from(x.media || []).includes('rtl')) {
x.media.appendMedium('all'); // enable them
}
}
}
});
});
})).observe(gradioApp(), {childList: true});
}
});
......@@ -2,16 +2,16 @@
let lastHeadImg = null;
notificationButton = null
let notificationButton = null;
onUiUpdate(function(){
if(notificationButton == null){
notificationButton = gradioApp().getElementById('request_notifications')
onUiUpdate(function() {
if (notificationButton == null) {
notificationButton = gradioApp().getElementById('request_notifications');
if(notificationButton != null){
notificationButton.addEventListener('click', function (evt) {
Notification.requestPermission();
},true);
if (notificationButton != null) {
notificationButton.addEventListener('click', () => {
void Notification.requestPermission();
}, true);
}
}
......@@ -42,7 +42,7 @@ onUiUpdate(function(){
}
);
notification.onclick = function(_){
notification.onclick = function(_) {
parent.focus();
this.close();
};
......
// code related to showing and updating progressbar shown as the image is being made
function rememberGallerySelection(id_gallery){
function rememberGallerySelection() {
}
function getGallerySelectedIndex(id_gallery){
function getGallerySelectedIndex() {
}
function request(url, data, handler, errorHandler){
function request(url, data, handler, errorHandler) {
var xhr = new XMLHttpRequest();
var url = url;
xhr.open("POST", url, true);
xhr.setRequestHeader("Content-Type", "application/json");
xhr.onreadystatechange = function () {
xhr.onreadystatechange = function() {
if (xhr.readyState === 4) {
if (xhr.status === 200) {
try {
var js = JSON.parse(xhr.responseText);
handler(js)
handler(js);
} catch (error) {
console.error(error);
errorHandler()
errorHandler();
}
} else{
errorHandler()
} else {
errorHandler();
}
}
};
......@@ -32,147 +31,147 @@ function request(url, data, handler, errorHandler){
xhr.send(js);
}
function pad2(x){
return x<10 ? '0'+x : x
function pad2(x) {
return x < 10 ? '0' + x : x;
}
function formatTime(secs){
if(secs > 3600){
return pad2(Math.floor(secs/60/60)) + ":" + pad2(Math.floor(secs/60)%60) + ":" + pad2(Math.floor(secs)%60)
} else if(secs > 60){
return pad2(Math.floor(secs/60)) + ":" + pad2(Math.floor(secs)%60)
} else{
return Math.floor(secs) + "s"
function formatTime(secs) {
if (secs > 3600) {
return pad2(Math.floor(secs / 60 / 60)) + ":" + pad2(Math.floor(secs / 60) % 60) + ":" + pad2(Math.floor(secs) % 60);
} else if (secs > 60) {
return pad2(Math.floor(secs / 60)) + ":" + pad2(Math.floor(secs) % 60);
} else {
return Math.floor(secs) + "s";
}
}
function setTitle(progress){
var title = 'Stable Diffusion'
function setTitle(progress) {
var title = 'Stable Diffusion';
if(opts.show_progress_in_title && progress){
if (opts.show_progress_in_title && progress) {
title = '[' + progress.trim() + '] ' + title;
}
if(document.title != title){
document.title = title;
if (document.title != title) {
document.title = title;
}
}
function randomId(){
return "task(" + Math.random().toString(36).slice(2, 7) + Math.random().toString(36).slice(2, 7) + Math.random().toString(36).slice(2, 7)+")"
function randomId() {
return "task(" + Math.random().toString(36).slice(2, 7) + Math.random().toString(36).slice(2, 7) + Math.random().toString(36).slice(2, 7) + ")";
}
// starts sending progress requests to "/internal/progress" uri, creating progressbar above progressbarContainer element and
// preview inside gallery element. Cleans up all created stuff when the task is over and calls atEnd.
// calls onProgress every time there is a progress update
function requestProgress(id_task, progressbarContainer, gallery, atEnd, onProgress){
var dateStart = new Date()
var wasEverActive = false
var parentProgressbar = progressbarContainer.parentNode
var parentGallery = gallery ? gallery.parentNode : null
var divProgress = document.createElement('div')
divProgress.className='progressDiv'
divProgress.style.display = opts.show_progressbar ? "block" : "none"
var divInner = document.createElement('div')
divInner.className='progress'
divProgress.appendChild(divInner)
parentProgressbar.insertBefore(divProgress, progressbarContainer)
if(parentGallery){
var livePreview = document.createElement('div')
livePreview.className='livePreview'
parentGallery.insertBefore(livePreview, gallery)
function requestProgress(id_task, progressbarContainer, gallery, atEnd, onProgress, inactivityTimeout = 40) {
var dateStart = new Date();
var wasEverActive = false;
var parentProgressbar = progressbarContainer.parentNode;
var parentGallery = gallery ? gallery.parentNode : null;
var divProgress = document.createElement('div');
divProgress.className = 'progressDiv';
divProgress.style.display = opts.show_progressbar ? "block" : "none";
var divInner = document.createElement('div');
divInner.className = 'progress';
divProgress.appendChild(divInner);
parentProgressbar.insertBefore(divProgress, progressbarContainer);
if (parentGallery) {
var livePreview = document.createElement('div');
livePreview.className = 'livePreview';
parentGallery.insertBefore(livePreview, gallery);
}
var removeProgressBar = function(){
setTitle("")
parentProgressbar.removeChild(divProgress)
if(parentGallery) parentGallery.removeChild(livePreview)
atEnd()
}
var removeProgressBar = function() {
setTitle("");
parentProgressbar.removeChild(divProgress);
if (parentGallery) parentGallery.removeChild(livePreview);
atEnd();
};
var fun = function(id_task, id_live_preview){
request("./internal/progress", {"id_task": id_task, "id_live_preview": id_live_preview}, function(res){
if(res.completed){
removeProgressBar()
return
var fun = function(id_task, id_live_preview) {
request("./internal/progress", {id_task: id_task, id_live_preview: id_live_preview}, function(res) {
if (res.completed) {
removeProgressBar();
return;
}
var rect = progressbarContainer.getBoundingClientRect()
var rect = progressbarContainer.getBoundingClientRect();
if(rect.width){
if (rect.width) {
divProgress.style.width = rect.width + "px";
}
progressText = ""
let progressText = "";
divInner.style.width = ((res.progress || 0) * 100.0) + '%'
divInner.style.background = res.progress ? "" : "transparent"
divInner.style.width = ((res.progress || 0) * 100.0) + '%';
divInner.style.background = res.progress ? "" : "transparent";
if(res.progress > 0){
progressText = ((res.progress || 0) * 100.0).toFixed(0) + '%'
if (res.progress > 0) {
progressText = ((res.progress || 0) * 100.0).toFixed(0) + '%';
}
if(res.eta){
progressText += " ETA: " + formatTime(res.eta)
if (res.eta) {
progressText += " ETA: " + formatTime(res.eta);
}
setTitle(progressText)
setTitle(progressText);
if(res.textinfo && res.textinfo.indexOf("\n") == -1){
progressText = res.textinfo + " " + progressText
if (res.textinfo && res.textinfo.indexOf("\n") == -1) {
progressText = res.textinfo + " " + progressText;
}
divInner.textContent = progressText
divInner.textContent = progressText;
var elapsedFromStart = (new Date() - dateStart) / 1000
var elapsedFromStart = (new Date() - dateStart) / 1000;
if(res.active) wasEverActive = true;
if (res.active) wasEverActive = true;
if(! res.active && wasEverActive){
removeProgressBar()
return
if (!res.active && wasEverActive) {
removeProgressBar();
return;
}
if(elapsedFromStart > 5 && !res.queued && !res.active){
removeProgressBar()
return
if (elapsedFromStart > inactivityTimeout && !res.queued && !res.active) {
removeProgressBar();
return;
}
if(res.live_preview && gallery){
var rect = gallery.getBoundingClientRect()
if(rect.width){
livePreview.style.width = rect.width + "px"
livePreview.style.height = rect.height + "px"
if (res.live_preview && gallery) {
rect = gallery.getBoundingClientRect();
if (rect.width) {
livePreview.style.width = rect.width + "px";
livePreview.style.height = rect.height + "px";
}
var img = new Image();
img.onload = function() {
livePreview.appendChild(img)
if(livePreview.childElementCount > 2){
livePreview.removeChild(livePreview.firstElementChild)
livePreview.appendChild(img);
if (livePreview.childElementCount > 2) {
livePreview.removeChild(livePreview.firstElementChild);
}
}
};
img.src = res.live_preview;
}
if(onProgress){
onProgress(res)
if (onProgress) {
onProgress(res);
}
setTimeout(() => {
fun(id_task, res.id_live_preview);
}, opts.live_preview_refresh_period || 500)
}, function(){
removeProgressBar()
})
}
}, opts.live_preview_refresh_period || 500);
}, function() {
removeProgressBar();
});
};
fun(id_task, 0)
fun(id_task, 0);
}
function start_training_textual_inversion(){
gradioApp().querySelector('#ti_error').innerHTML=''
var id = randomId()
requestProgress(id, gradioApp().getElementById('ti_output'), gradioApp().getElementById('ti_gallery'), function(){}, function(progress){
gradioApp().getElementById('ti_progress').innerHTML = progress.textinfo
})
var res = args_to_array(arguments)
res[0] = id
return res
}
function start_training_textual_inversion() {
gradioApp().querySelector('#ti_error').innerHTML = '';
var id = randomId();
requestProgress(id, gradioApp().getElementById('ti_output'), gradioApp().getElementById('ti_gallery'), function() {}, function(progress) {
gradioApp().getElementById('ti_progress').innerHTML = progress.textinfo;
});
var res = Array.from(arguments);
res[0] = id;
return res;
}
This diff is collapsed.
// various hints and extra info for the settings tab
var settingsHintsSetup = false;
onOptionsChanged(function() {
if (settingsHintsSetup) return;
settingsHintsSetup = true;
gradioApp().querySelectorAll('#settings [id^=setting_]').forEach(function(div) {
var name = div.id.substr(8);
var commentBefore = opts._comments_before[name];
var commentAfter = opts._comments_after[name];
if (!commentBefore && !commentAfter) return;
var span = null;
if (div.classList.contains('gradio-checkbox')) span = div.querySelector('label span');
else if (div.classList.contains('gradio-checkboxgroup')) span = div.querySelector('span').firstChild;
else if (div.classList.contains('gradio-radio')) span = div.querySelector('span').firstChild;
else span = div.querySelector('label span').firstChild;
if (!span) return;
if (commentBefore) {
var comment = document.createElement('DIV');
comment.className = 'settings-comment';
comment.innerHTML = commentBefore;
span.parentElement.insertBefore(document.createTextNode('\xa0'), span);
span.parentElement.insertBefore(comment, span);
span.parentElement.insertBefore(document.createTextNode('\xa0'), span);
}
if (commentAfter) {
comment = document.createElement('DIV');
comment.className = 'settings-comment';
comment.innerHTML = commentAfter;
span.parentElement.insertBefore(comment, span.nextSibling);
span.parentElement.insertBefore(document.createTextNode('\xa0'), span.nextSibling);
}
});
});
function settingsHintsShowQuicksettings() {
requestGet("./internal/quicksettings-hint", {}, function(data) {
var table = document.createElement('table');
table.className = 'settings-value-table';
data.forEach(function(obj) {
var tr = document.createElement('tr');
var td = document.createElement('td');
td.textContent = obj.name;
tr.appendChild(td);
td = document.createElement('td');
td.textContent = obj.label;
tr.appendChild(td);
table.appendChild(tr);
});
popup(table);
});
}
This diff is collapsed.
This diff is collapsed.
......@@ -223,8 +223,9 @@ for key in _options:
if(_options[key].dest != 'help'):
flag = _options[key]
_type = str
if _options[key].default is not None: _type = type(_options[key].default)
flags.update({flag.dest: (_type,Field(default=flag.default, description=flag.help))})
if _options[key].default is not None:
_type = type(_options[key].default)
flags.update({flag.dest: (_type, Field(default=flag.default, description=flag.help))})
FlagsModel = create_model("Flags", **flags)
......@@ -286,6 +287,23 @@ class MemoryResponse(BaseModel):
ram: dict = Field(title="RAM", description="System memory stats")
cuda: dict = Field(title="CUDA", description="nVidia CUDA memory stats")
class ScriptsList(BaseModel):
txt2img: list = Field(default=None,title="Txt2img", description="Titles of scripts (txt2img)")
img2img: list = Field(default=None,title="Img2img", description="Titles of scripts (img2img)")
\ No newline at end of file
txt2img: list = Field(default=None, title="Txt2img", description="Titles of scripts (txt2img)")
img2img: list = Field(default=None, title="Img2img", description="Titles of scripts (img2img)")
class ScriptArg(BaseModel):
label: str = Field(default=None, title="Label", description="Name of the argument in UI")
value: Optional[Any] = Field(default=None, title="Value", description="Default value of the argument")
minimum: Optional[Any] = Field(default=None, title="Minimum", description="Minimum allowed value for the argumentin UI")
maximum: Optional[Any] = Field(default=None, title="Minimum", description="Maximum allowed value for the argumentin UI")
step: Optional[Any] = Field(default=None, title="Minimum", description="Step for changing value of the argumentin UI")
choices: Optional[List[str]] = Field(default=None, title="Choices", description="Possible values for the argument")
class ScriptInfo(BaseModel):
name: str = Field(default=None, title="Name", description="Script name")
is_alwayson: bool = Field(default=None, title="IsAlwayson", description="Flag specifying whether this script is an alwayson script")
is_img2img: bool = Field(default=None, title="IsImg2img", description="Flag specifying whether this script is an img2img script")
args: List[ScriptArg] = Field(title="Arguments", description="List of script's arguments")
......@@ -35,6 +35,7 @@ def wrap_gradio_gpu_call(func, extra_outputs=None):
try:
res = func(*args, **kwargs)
progress.record_results(id_task, res)
finally:
progress.finish_task(id_task)
......@@ -59,7 +60,7 @@ def wrap_gradio_call(func, extra_outputs=None, add_stats=False):
max_debug_str_len = 131072 # (1024*1024)/8
print("Error completing request", file=sys.stderr)
argStr = f"Arguments: {str(args)} {str(kwargs)}"
argStr = f"Arguments: {args} {kwargs}"
print(argStr[:max_debug_str_len], file=sys.stderr)
if len(argStr) > max_debug_str_len:
print(f"(Argument list truncated at {max_debug_str_len}/{len(argStr)} characters)", file=sys.stderr)
......@@ -72,7 +73,8 @@ def wrap_gradio_call(func, extra_outputs=None, add_stats=False):
if extra_outputs_array is None:
extra_outputs_array = [None, '']
res = extra_outputs_array + [f"<div class='error'>{html.escape(type(e).__name__+': '+str(e))}</div>"]
error_message = f'{type(e).__name__}: {e}'
res = extra_outputs_array + [f"<div class='error'>{html.escape(error_message)}</div>"]
shared.state.skipped = False
shared.state.interrupted = False
......
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
......@@ -2,7 +2,6 @@ import os
import re
import torch
from PIL import Image
import numpy as np
from modules import modelloader, paths, deepbooru_model, devices, images, shared
......@@ -79,7 +78,7 @@ class DeepDanbooru:
res = []
filtertags = set([x.strip().replace(' ', '_') for x in shared.opts.deepbooru_filter_tags.split(",")])
filtertags = {x.strip().replace(' ', '_') for x in shared.opts.deepbooru_filter_tags.split(",")}
for tag in [x for x in tags if x not in filtertags]:
probability = probability_dict[tag]
......
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
from .sampler import UniPCSampler
from .sampler import UniPCSampler # noqa: F401
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment