Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Sign in / Register
Toggle navigation
S
Stable Diffusion Webui
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Locked Files
Issues
0
Issues
0
List
Boards
Labels
Service Desk
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Security & Compliance
Security & Compliance
Dependency List
License Compliance
Packages
Packages
List
Container Registry
Analytics
Analytics
CI / CD
Code Review
Insights
Issues
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
novelai-storage
Stable Diffusion Webui
Commits
d4ea5f4d
Commit
d4ea5f4d
authored
Oct 11, 2022
by
AUTOMATIC
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
add an option to unload models during hypernetwork training to save VRAM
parent
6d09b8d1
Changes
5
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
46 additions
and
18 deletions
+46
-18
modules/hypernetworks/hypernetwork.py
modules/hypernetworks/hypernetwork.py
+18
-7
modules/hypernetworks/ui.py
modules/hypernetworks/ui.py
+3
-1
modules/shared.py
modules/shared.py
+4
-0
modules/textual_inversion/dataset.py
modules/textual_inversion/dataset.py
+20
-9
modules/textual_inversion/textual_inversion.py
modules/textual_inversion/textual_inversion.py
+1
-1
No files found.
modules/hypernetworks/hypernetwork.py
View file @
d4ea5f4d
...
@@ -175,6 +175,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
...
@@ -175,6 +175,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
filename
=
os
.
path
.
join
(
shared
.
cmd_opts
.
hypernetwork_dir
,
f
'{hypernetwork_name}.pt'
)
filename
=
os
.
path
.
join
(
shared
.
cmd_opts
.
hypernetwork_dir
,
f
'{hypernetwork_name}.pt'
)
log_directory
=
os
.
path
.
join
(
log_directory
,
datetime
.
datetime
.
now
()
.
strftime
(
"
%
Y-
%
m-
%
d"
),
hypernetwork_name
)
log_directory
=
os
.
path
.
join
(
log_directory
,
datetime
.
datetime
.
now
()
.
strftime
(
"
%
Y-
%
m-
%
d"
),
hypernetwork_name
)
unload
=
shared
.
opts
.
unload_models_when_training
if
save_hypernetwork_every
>
0
:
if
save_hypernetwork_every
>
0
:
hypernetwork_dir
=
os
.
path
.
join
(
log_directory
,
"hypernetworks"
)
hypernetwork_dir
=
os
.
path
.
join
(
log_directory
,
"hypernetworks"
)
...
@@ -188,11 +189,13 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
...
@@ -188,11 +189,13 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
else
:
else
:
images_dir
=
None
images_dir
=
None
cond_model
=
shared
.
sd_model
.
cond_stage_model
shared
.
state
.
textinfo
=
f
"Preparing dataset from {html.escape(data_root)}..."
shared
.
state
.
textinfo
=
f
"Preparing dataset from {html.escape(data_root)}..."
with
torch
.
autocast
(
"cuda"
):
with
torch
.
autocast
(
"cuda"
):
ds
=
modules
.
textual_inversion
.
dataset
.
PersonalizedBase
(
data_root
=
data_root
,
width
=
512
,
height
=
512
,
repeats
=
1
,
placeholder_token
=
hypernetwork_name
,
model
=
shared
.
sd_model
,
device
=
devices
.
device
,
template_file
=
template_file
)
ds
=
modules
.
textual_inversion
.
dataset
.
PersonalizedBase
(
data_root
=
data_root
,
width
=
512
,
height
=
512
,
repeats
=
1
,
placeholder_token
=
hypernetwork_name
,
model
=
shared
.
sd_model
,
device
=
devices
.
device
,
template_file
=
template_file
,
include_cond
=
True
)
if
unload
:
shared
.
sd_model
.
cond_stage_model
.
to
(
devices
.
cpu
)
shared
.
sd_model
.
first_stage_model
.
to
(
devices
.
cpu
)
hypernetwork
=
shared
.
loaded_hypernetwork
hypernetwork
=
shared
.
loaded_hypernetwork
weights
=
hypernetwork
.
weights
()
weights
=
hypernetwork
.
weights
()
...
@@ -211,7 +214,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
...
@@ -211,7 +214,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
return
hypernetwork
,
filename
return
hypernetwork
,
filename
pbar
=
tqdm
.
tqdm
(
enumerate
(
ds
),
total
=
steps
-
ititial_step
)
pbar
=
tqdm
.
tqdm
(
enumerate
(
ds
),
total
=
steps
-
ititial_step
)
for
i
,
(
x
,
text
)
in
pbar
:
for
i
,
(
x
,
text
,
cond
)
in
pbar
:
hypernetwork
.
step
=
i
+
ititial_step
hypernetwork
.
step
=
i
+
ititial_step
if
hypernetwork
.
step
>
steps
:
if
hypernetwork
.
step
>
steps
:
...
@@ -221,11 +224,11 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
...
@@ -221,11 +224,11 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
break
break
with
torch
.
autocast
(
"cuda"
):
with
torch
.
autocast
(
"cuda"
):
c
=
cond_model
([
text
])
cond
=
cond
.
to
(
devices
.
device
)
x
=
x
.
to
(
devices
.
device
)
x
=
x
.
to
(
devices
.
device
)
loss
=
shared
.
sd_model
(
x
.
unsqueeze
(
0
),
c
)[
0
]
loss
=
shared
.
sd_model
(
x
.
unsqueeze
(
0
),
c
ond
)[
0
]
del
x
del
x
del
cond
losses
[
hypernetwork
.
step
%
losses
.
shape
[
0
]]
=
loss
.
item
()
losses
[
hypernetwork
.
step
%
losses
.
shape
[
0
]]
=
loss
.
item
()
...
@@ -244,6 +247,10 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
...
@@ -244,6 +247,10 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
preview_text
=
text
if
preview_image_prompt
==
""
else
preview_image_prompt
preview_text
=
text
if
preview_image_prompt
==
""
else
preview_image_prompt
optimizer
.
zero_grad
()
shared
.
sd_model
.
cond_stage_model
.
to
(
devices
.
device
)
shared
.
sd_model
.
first_stage_model
.
to
(
devices
.
device
)
p
=
processing
.
StableDiffusionProcessingTxt2Img
(
p
=
processing
.
StableDiffusionProcessingTxt2Img
(
sd_model
=
shared
.
sd_model
,
sd_model
=
shared
.
sd_model
,
prompt
=
preview_text
,
prompt
=
preview_text
,
...
@@ -255,6 +262,10 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
...
@@ -255,6 +262,10 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
processed
=
processing
.
process_images
(
p
)
processed
=
processing
.
process_images
(
p
)
image
=
processed
.
images
[
0
]
image
=
processed
.
images
[
0
]
if
unload
:
shared
.
sd_model
.
cond_stage_model
.
to
(
devices
.
cpu
)
shared
.
sd_model
.
first_stage_model
.
to
(
devices
.
cpu
)
shared
.
state
.
current_image
=
image
shared
.
state
.
current_image
=
image
image
.
save
(
last_saved_image
)
image
.
save
(
last_saved_image
)
...
...
modules/hypernetworks/ui.py
View file @
d4ea5f4d
...
@@ -5,7 +5,7 @@ import gradio as gr
...
@@ -5,7 +5,7 @@ import gradio as gr
import
modules.textual_inversion.textual_inversion
import
modules.textual_inversion.textual_inversion
import
modules.textual_inversion.preprocess
import
modules.textual_inversion.preprocess
from
modules
import
sd_hijack
,
shared
from
modules
import
sd_hijack
,
shared
,
devices
from
modules.hypernetworks
import
hypernetwork
from
modules.hypernetworks
import
hypernetwork
...
@@ -41,5 +41,7 @@ Hypernetwork saved to {html.escape(filename)}
...
@@ -41,5 +41,7 @@ Hypernetwork saved to {html.escape(filename)}
raise
raise
finally
:
finally
:
shared
.
loaded_hypernetwork
=
initial_hypernetwork
shared
.
loaded_hypernetwork
=
initial_hypernetwork
shared
.
sd_model
.
cond_stage_model
.
to
(
devices
.
device
)
shared
.
sd_model
.
first_stage_model
.
to
(
devices
.
device
)
sd_hijack
.
apply_optimizations
()
sd_hijack
.
apply_optimizations
()
modules/shared.py
View file @
d4ea5f4d
...
@@ -228,6 +228,10 @@ options_templates.update(options_section(('system', "System"), {
...
@@ -228,6 +228,10 @@ options_templates.update(options_section(('system', "System"), {
"multiple_tqdm"
:
OptionInfo
(
True
,
"Add a second progress bar to the console that shows progress for an entire job."
),
"multiple_tqdm"
:
OptionInfo
(
True
,
"Add a second progress bar to the console that shows progress for an entire job."
),
}))
}))
options_templates
.
update
(
options_section
((
'training'
,
"Training"
),
{
"unload_models_when_training"
:
OptionInfo
(
False
,
"Unload VAE and CLIP form VRAM when training"
),
}))
options_templates
.
update
(
options_section
((
'sd'
,
"Stable Diffusion"
),
{
options_templates
.
update
(
options_section
((
'sd'
,
"Stable Diffusion"
),
{
"sd_model_checkpoint"
:
OptionInfo
(
None
,
"Stable Diffusion checkpoint"
,
gr
.
Dropdown
,
lambda
:
{
"choices"
:
modules
.
sd_models
.
checkpoint_tiles
()},
show_on_main_page
=
True
),
"sd_model_checkpoint"
:
OptionInfo
(
None
,
"Stable Diffusion checkpoint"
,
gr
.
Dropdown
,
lambda
:
{
"choices"
:
modules
.
sd_models
.
checkpoint_tiles
()},
show_on_main_page
=
True
),
"sd_hypernetwork"
:
OptionInfo
(
"None"
,
"Stable Diffusion finetune hypernetwork"
,
gr
.
Dropdown
,
lambda
:
{
"choices"
:
[
"None"
]
+
[
x
for
x
in
hypernetworks
.
keys
()]}),
"sd_hypernetwork"
:
OptionInfo
(
"None"
,
"Stable Diffusion finetune hypernetwork"
,
gr
.
Dropdown
,
lambda
:
{
"choices"
:
[
"None"
]
+
[
x
for
x
in
hypernetworks
.
keys
()]}),
...
...
modules/textual_inversion/dataset.py
View file @
d4ea5f4d
...
@@ -8,14 +8,14 @@ from torchvision import transforms
...
@@ -8,14 +8,14 @@ from torchvision import transforms
import
random
import
random
import
tqdm
import
tqdm
from
modules
import
devices
from
modules
import
devices
,
shared
import
re
import
re
re_tag
=
re
.
compile
(
r"[a-zA-Z][_\w\d()]+"
)
re_tag
=
re
.
compile
(
r"[a-zA-Z][_\w\d()]+"
)
class
PersonalizedBase
(
Dataset
):
class
PersonalizedBase
(
Dataset
):
def
__init__
(
self
,
data_root
,
width
,
height
,
repeats
,
flip_p
=
0.5
,
placeholder_token
=
"*"
,
model
=
None
,
device
=
None
,
template_file
=
None
):
def
__init__
(
self
,
data_root
,
width
,
height
,
repeats
,
flip_p
=
0.5
,
placeholder_token
=
"*"
,
model
=
None
,
device
=
None
,
template_file
=
None
,
include_cond
=
False
):
self
.
placeholder_token
=
placeholder_token
self
.
placeholder_token
=
placeholder_token
...
@@ -32,6 +32,8 @@ class PersonalizedBase(Dataset):
...
@@ -32,6 +32,8 @@ class PersonalizedBase(Dataset):
assert
data_root
,
'dataset directory not specified'
assert
data_root
,
'dataset directory not specified'
cond_model
=
shared
.
sd_model
.
cond_stage_model
self
.
image_paths
=
[
os
.
path
.
join
(
data_root
,
file_path
)
for
file_path
in
os
.
listdir
(
data_root
)]
self
.
image_paths
=
[
os
.
path
.
join
(
data_root
,
file_path
)
for
file_path
in
os
.
listdir
(
data_root
)]
print
(
"Preparing dataset..."
)
print
(
"Preparing dataset..."
)
for
path
in
tqdm
.
tqdm
(
self
.
image_paths
):
for
path
in
tqdm
.
tqdm
(
self
.
image_paths
):
...
@@ -53,7 +55,13 @@ class PersonalizedBase(Dataset):
...
@@ -53,7 +55,13 @@ class PersonalizedBase(Dataset):
init_latent
=
model
.
get_first_stage_encoding
(
model
.
encode_first_stage
(
torchdata
.
unsqueeze
(
dim
=
0
)))
.
squeeze
()
init_latent
=
model
.
get_first_stage_encoding
(
model
.
encode_first_stage
(
torchdata
.
unsqueeze
(
dim
=
0
)))
.
squeeze
()
init_latent
=
init_latent
.
to
(
devices
.
cpu
)
init_latent
=
init_latent
.
to
(
devices
.
cpu
)
self
.
dataset
.
append
((
init_latent
,
filename_tokens
))
if
include_cond
:
text
=
self
.
create_text
(
filename_tokens
)
cond
=
cond_model
([
text
])
.
to
(
devices
.
cpu
)
else
:
cond
=
None
self
.
dataset
.
append
((
init_latent
,
filename_tokens
,
cond
))
self
.
length
=
len
(
self
.
dataset
)
*
repeats
self
.
length
=
len
(
self
.
dataset
)
*
repeats
...
@@ -64,6 +72,12 @@ class PersonalizedBase(Dataset):
...
@@ -64,6 +72,12 @@ class PersonalizedBase(Dataset):
def
shuffle
(
self
):
def
shuffle
(
self
):
self
.
indexes
=
self
.
initial_indexes
[
torch
.
randperm
(
self
.
initial_indexes
.
shape
[
0
])]
self
.
indexes
=
self
.
initial_indexes
[
torch
.
randperm
(
self
.
initial_indexes
.
shape
[
0
])]
def
create_text
(
self
,
filename_tokens
):
text
=
random
.
choice
(
self
.
lines
)
text
=
text
.
replace
(
"[name]"
,
self
.
placeholder_token
)
text
=
text
.
replace
(
"[filewords]"
,
' '
.
join
(
filename_tokens
))
return
text
def
__len__
(
self
):
def
__len__
(
self
):
return
self
.
length
return
self
.
length
...
@@ -72,10 +86,7 @@ class PersonalizedBase(Dataset):
...
@@ -72,10 +86,7 @@ class PersonalizedBase(Dataset):
self
.
shuffle
()
self
.
shuffle
()
index
=
self
.
indexes
[
i
%
len
(
self
.
indexes
)]
index
=
self
.
indexes
[
i
%
len
(
self
.
indexes
)]
x
,
filename_tokens
=
self
.
dataset
[
index
]
x
,
filename_tokens
,
cond
=
self
.
dataset
[
index
]
text
=
random
.
choice
(
self
.
lines
)
text
=
text
.
replace
(
"[name]"
,
self
.
placeholder_token
)
text
=
text
.
replace
(
"[filewords]"
,
' '
.
join
(
filename_tokens
))
return
x
,
text
text
=
self
.
create_text
(
filename_tokens
)
return
x
,
text
,
cond
modules/textual_inversion/textual_inversion.py
View file @
d4ea5f4d
...
@@ -201,7 +201,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
...
@@ -201,7 +201,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
return
embedding
,
filename
return
embedding
,
filename
pbar
=
tqdm
.
tqdm
(
enumerate
(
ds
),
total
=
steps
-
ititial_step
)
pbar
=
tqdm
.
tqdm
(
enumerate
(
ds
),
total
=
steps
-
ititial_step
)
for
i
,
(
x
,
text
)
in
pbar
:
for
i
,
(
x
,
text
,
_
)
in
pbar
:
embedding
.
step
=
i
+
ititial_step
embedding
.
step
=
i
+
ititial_step
if
embedding
.
step
>
steps
:
if
embedding
.
step
>
steps
:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment