Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Sign in / Register
Toggle navigation
S
Stable Diffusion Webui
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Locked Files
Issues
0
Issues
0
List
Boards
Labels
Service Desk
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Security & Compliance
Security & Compliance
Dependency List
License Compliance
Packages
Packages
List
Container Registry
Analytics
Analytics
CI / CD
Code Review
Insights
Issues
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
novelai-storage
Stable Diffusion Webui
Commits
cc90dcc9
Commit
cc90dcc9
authored
Nov 27, 2022
by
AUTOMATIC1111
Committed by
GitHub
Nov 27, 2022
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #4918 from brkirch/pytorch-fixes
Fixes for PyTorch 1.12.1 when using MPS
parents
10923f9b
e247b740
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
27 additions
and
10 deletions
+27
-10
modules/devices.py
modules/devices.py
+24
-7
modules/esrgan_model.py
modules/esrgan_model.py
+1
-1
modules/scunet_model.py
modules/scunet_model.py
+1
-1
modules/swinir_model.py
modules/swinir_model.py
+1
-1
No files found.
modules/devices.py
View file @
cc90dcc9
...
...
@@ -2,9 +2,10 @@ import sys, os, shlex
import
contextlib
import
torch
from
modules
import
errors
from
packaging
import
version
# has_mps is only available in nightly pytorch (for now) and
Mas
OS 12.3+.
# has_mps is only available in nightly pytorch (for now) and
mac
OS 12.3+.
# check `getattr` and try it for compatibility
def
has_mps
()
->
bool
:
if
not
getattr
(
torch
,
'has_mps'
,
False
):
...
...
@@ -99,9 +100,25 @@ def autocast(disable=False):
# MPS workaround for https://github.com/pytorch/pytorch/issues/79383
def
mps_contiguous
(
input_tensor
,
device
):
return
input_tensor
.
contiguous
()
if
device
.
type
==
'mps'
else
input_tensor
def
mps_contiguous_to
(
input_tensor
,
device
):
return
mps_contiguous
(
input_tensor
,
device
)
.
to
(
device
)
orig_tensor_to
=
torch
.
Tensor
.
to
def
tensor_to_fix
(
self
,
*
args
,
**
kwargs
):
if
self
.
device
.
type
!=
'mps'
and
\
((
len
(
args
)
>
0
and
isinstance
(
args
[
0
],
torch
.
device
)
and
args
[
0
]
.
type
==
'mps'
)
or
\
(
isinstance
(
kwargs
.
get
(
'device'
),
torch
.
device
)
and
kwargs
[
'device'
]
.
type
==
'mps'
)):
self
=
self
.
contiguous
()
return
orig_tensor_to
(
self
,
*
args
,
**
kwargs
)
# MPS workaround for https://github.com/pytorch/pytorch/issues/80800
orig_layer_norm
=
torch
.
nn
.
functional
.
layer_norm
def
layer_norm_fix
(
*
args
,
**
kwargs
):
if
len
(
args
)
>
0
and
isinstance
(
args
[
0
],
torch
.
Tensor
)
and
args
[
0
]
.
device
.
type
==
'mps'
:
args
=
list
(
args
)
args
[
0
]
=
args
[
0
]
.
contiguous
()
return
orig_layer_norm
(
*
args
,
**
kwargs
)
# PyTorch 1.13 doesn't need these fixes but unfortunately is slower and has regressions that prevent training from working
if
has_mps
()
and
version
.
parse
(
torch
.
__version__
)
<
version
.
parse
(
"1.13"
):
torch
.
Tensor
.
to
=
tensor_to_fix
torch
.
nn
.
functional
.
layer_norm
=
layer_norm_fix
modules/esrgan_model.py
View file @
cc90dcc9
...
...
@@ -199,7 +199,7 @@ def upscale_without_tiling(model, img):
img
=
img
[:,
:,
::
-
1
]
img
=
np
.
ascontiguousarray
(
np
.
transpose
(
img
,
(
2
,
0
,
1
)))
/
255
img
=
torch
.
from_numpy
(
img
)
.
float
()
img
=
devices
.
mps_contiguous_to
(
img
.
unsqueeze
(
0
),
devices
.
device_esrgan
)
img
=
img
.
unsqueeze
(
0
)
.
to
(
devices
.
device_esrgan
)
with
torch
.
no_grad
():
output
=
model
(
img
)
output
=
output
.
squeeze
()
.
float
()
.
cpu
()
.
clamp_
(
0
,
1
)
.
numpy
()
...
...
modules/scunet_model.py
View file @
cc90dcc9
...
...
@@ -54,7 +54,7 @@ class UpscalerScuNET(modules.upscaler.Upscaler):
img
=
img
[:,
:,
::
-
1
]
img
=
np
.
moveaxis
(
img
,
2
,
0
)
/
255
img
=
torch
.
from_numpy
(
img
)
.
float
()
img
=
devices
.
mps_contiguous_to
(
img
.
unsqueeze
(
0
),
device
)
img
=
img
.
unsqueeze
(
0
)
.
to
(
device
)
with
torch
.
no_grad
():
output
=
model
(
img
)
...
...
modules/swinir_model.py
View file @
cc90dcc9
...
...
@@ -111,7 +111,7 @@ def upscale(
img
=
img
[:,
:,
::
-
1
]
img
=
np
.
moveaxis
(
img
,
2
,
0
)
/
255
img
=
torch
.
from_numpy
(
img
)
.
float
()
img
=
devices
.
mps_contiguous_to
(
img
.
unsqueeze
(
0
),
devices
.
device_swinir
)
img
=
img
.
unsqueeze
(
0
)
.
to
(
devices
.
device_swinir
)
with
torch
.
no_grad
(),
precision_scope
(
"cuda"
):
_
,
_
,
h_old
,
w_old
=
img
.
size
()
h_pad
=
(
h_old
//
window_size
+
1
)
*
window_size
-
h_old
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment