Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Sign in / Register
Toggle navigation
S
Stable Diffusion Webui
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Locked Files
Issues
0
Issues
0
List
Boards
Labels
Service Desk
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Security & Compliance
Security & Compliance
Dependency List
License Compliance
Packages
Packages
List
Container Registry
Analytics
Analytics
CI / CD
Code Review
Insights
Issues
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
novelai-storage
Stable Diffusion Webui
Commits
cba6fba1
Commit
cba6fba1
authored
Jan 01, 2024
by
AUTOMATIC1111
Committed by
GitHub
Jan 01, 2024
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #14353 from Nuullll/ipex-sdpa
[IPEX] Slice SDPA into smaller chunks
parents
ac0ecf3b
f586f497
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
67 additions
and
2 deletions
+67
-2
modules/xpu_specific.py
modules/xpu_specific.py
+67
-2
No files found.
modules/xpu_specific.py
View file @
cba6fba1
...
@@ -27,6 +27,71 @@ def torch_xpu_gc():
...
@@ -27,6 +27,71 @@ def torch_xpu_gc():
has_xpu
=
check_for_xpu
()
has_xpu
=
check_for_xpu
()
# Arc GPU cannot allocate a single block larger than 4GB: https://github.com/intel/compute-runtime/issues/627
# Here we implement a slicing algorithm to split large batch size into smaller chunks,
# so that SDPA of each chunk wouldn't require any allocation larger than ARC_SINGLE_ALLOCATION_LIMIT.
# The heuristic limit (TOTAL_VRAM // 8) is tuned for Intel Arc A770 16G and Arc A750 8G,
# which is the best trade-off between VRAM usage and performance.
ARC_SINGLE_ALLOCATION_LIMIT
=
{}
orig_sdp_attn_func
=
torch
.
nn
.
functional
.
scaled_dot_product_attention
def
torch_xpu_scaled_dot_product_attention
(
query
,
key
,
value
,
attn_mask
=
None
,
dropout_p
=
0.0
,
is_causal
=
False
,
*
args
,
**
kwargs
):
# cast to same dtype first
key
=
key
.
to
(
query
.
dtype
)
value
=
value
.
to
(
query
.
dtype
)
N
=
query
.
shape
[:
-
2
]
# Batch size
L
=
query
.
size
(
-
2
)
# Target sequence length
E
=
query
.
size
(
-
1
)
# Embedding dimension of the query and key
S
=
key
.
size
(
-
2
)
# Source sequence length
Ev
=
value
.
size
(
-
1
)
# Embedding dimension of the value
total_batch_size
=
torch
.
numel
(
torch
.
empty
(
N
))
device_id
=
query
.
device
.
index
if
device_id
not
in
ARC_SINGLE_ALLOCATION_LIMIT
:
ARC_SINGLE_ALLOCATION_LIMIT
[
device_id
]
=
min
(
torch
.
xpu
.
get_device_properties
(
device_id
)
.
total_memory
//
8
,
4
*
1024
*
1024
*
1024
)
batch_size_limit
=
max
(
1
,
ARC_SINGLE_ALLOCATION_LIMIT
[
device_id
]
//
(
L
*
S
*
query
.
element_size
()))
if
total_batch_size
<=
batch_size_limit
:
return
orig_sdp_attn_func
(
query
,
key
,
value
,
attn_mask
,
dropout_p
,
is_causal
,
*
args
,
**
kwargs
)
query
=
torch
.
reshape
(
query
,
(
-
1
,
L
,
E
))
key
=
torch
.
reshape
(
key
,
(
-
1
,
S
,
E
))
value
=
torch
.
reshape
(
value
,
(
-
1
,
S
,
Ev
))
if
attn_mask
is
not
None
:
attn_mask
=
attn_mask
.
view
(
-
1
,
L
,
S
)
chunk_count
=
(
total_batch_size
+
batch_size_limit
-
1
)
//
batch_size_limit
outputs
=
[]
for
i
in
range
(
chunk_count
):
attn_mask_chunk
=
(
None
if
attn_mask
is
None
else
attn_mask
[
i
*
batch_size_limit
:
(
i
+
1
)
*
batch_size_limit
,
:,
:]
)
chunk_output
=
orig_sdp_attn_func
(
query
[
i
*
batch_size_limit
:
(
i
+
1
)
*
batch_size_limit
,
:,
:],
key
[
i
*
batch_size_limit
:
(
i
+
1
)
*
batch_size_limit
,
:,
:],
value
[
i
*
batch_size_limit
:
(
i
+
1
)
*
batch_size_limit
,
:,
:],
attn_mask_chunk
,
dropout_p
,
is_causal
,
*
args
,
**
kwargs
)
outputs
.
append
(
chunk_output
)
result
=
torch
.
cat
(
outputs
,
dim
=
0
)
return
torch
.
reshape
(
result
,
(
*
N
,
L
,
Ev
))
if
has_xpu
:
if
has_xpu
:
# W/A for https://github.com/intel/intel-extension-for-pytorch/issues/452: torch.Generator API doesn't support XPU device
# W/A for https://github.com/intel/intel-extension-for-pytorch/issues/452: torch.Generator API doesn't support XPU device
CondFunc
(
'torch.Generator'
,
CondFunc
(
'torch.Generator'
,
...
@@ -55,5 +120,5 @@ if has_xpu:
...
@@ -55,5 +120,5 @@ if has_xpu:
lambda
orig_func
,
tensors
,
dim
=
0
,
out
=
None
:
orig_func
([
t
.
to
(
tensors
[
0
]
.
dtype
)
for
t
in
tensors
],
dim
=
dim
,
out
=
out
),
lambda
orig_func
,
tensors
,
dim
=
0
,
out
=
None
:
orig_func
([
t
.
to
(
tensors
[
0
]
.
dtype
)
for
t
in
tensors
],
dim
=
dim
,
out
=
out
),
lambda
orig_func
,
tensors
,
dim
=
0
,
out
=
None
:
not
all
(
t
.
dtype
==
tensors
[
0
]
.
dtype
for
t
in
tensors
))
lambda
orig_func
,
tensors
,
dim
=
0
,
out
=
None
:
not
all
(
t
.
dtype
==
tensors
[
0
]
.
dtype
for
t
in
tensors
))
CondFunc
(
'torch.nn.functional.scaled_dot_product_attention'
,
CondFunc
(
'torch.nn.functional.scaled_dot_product_attention'
,
lambda
orig_func
,
query
,
key
,
value
,
attn_mask
=
None
,
dropout_p
=
0.0
,
is_causal
=
False
:
orig_func
(
query
,
key
.
to
(
query
.
dtype
),
value
.
to
(
query
.
dtype
),
attn_mask
,
dropout_p
,
is_causal
),
lambda
orig_func
,
*
args
,
**
kwargs
:
torch_xpu_scaled_dot_product_attention
(
*
args
,
**
kwargs
),
lambda
orig_func
,
query
,
key
,
value
,
attn_mask
=
None
,
dropout_p
=
0.0
,
is_causal
=
False
:
query
.
dtype
!=
key
.
dtype
or
query
.
dtype
!=
value
.
dtype
)
lambda
orig_func
,
query
,
*
args
,
**
kwargs
:
query
.
is_xpu
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment