Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Sign in / Register
Toggle navigation
S
Stable Diffusion Webui
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Locked Files
Issues
0
Issues
0
List
Boards
Labels
Service Desk
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Security & Compliance
Security & Compliance
Dependency List
License Compliance
Packages
Packages
List
Container Registry
Analytics
Analytics
CI / CD
Code Review
Insights
Issues
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
novelai-storage
Stable Diffusion Webui
Commits
bef40851
Commit
bef40851
authored
Jul 29, 2023
by
AUTOMATIC1111
Committed by
GitHub
Jul 29, 2023
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #11850 from lambertae/restart_sampling
Restart sampling
parents
9a52a30d
8de6d3ff
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
72 additions
and
2 deletions
+72
-2
README.md
README.md
+1
-0
modules/sd_samplers_kdiffusion.py
modules/sd_samplers_kdiffusion.py
+71
-2
No files found.
README.md
View file @
bef40851
...
...
@@ -145,6 +145,7 @@ Licenses for borrowed code can be found in `Settings -> Licenses` screen, and al
-
Stable Diffusion - https://github.com/CompVis/stable-diffusion, https://github.com/CompVis/taming-transformers
-
k-diffusion - https://github.com/crowsonkb/k-diffusion.git
-
Restart sampling - https://github.com/Newbeeer/diffusion_restart_sampling
-
GFPGAN - https://github.com/TencentARC/GFPGAN.git
-
CodeFormer - https://github.com/sczhou/CodeFormer
-
ESRGAN - https://github.com/xinntao/ESRGAN
...
...
modules/sd_samplers_kdiffusion.py
View file @
bef40851
...
...
@@ -30,12 +30,81 @@ samplers_k_diffusion = [
(
'DPM++ 2M Karras'
,
'sample_dpmpp_2m'
,
[
'k_dpmpp_2m_ka'
],
{
'scheduler'
:
'karras'
}),
(
'DPM++ SDE Karras'
,
'sample_dpmpp_sde'
,
[
'k_dpmpp_sde_ka'
],
{
'scheduler'
:
'karras'
,
"second_order"
:
True
,
"brownian_noise"
:
True
}),
(
'DPM++ 2M SDE Karras'
,
'sample_dpmpp_2m_sde'
,
[
'k_dpmpp_2m_sde_ka'
],
{
'scheduler'
:
'karras'
,
"brownian_noise"
:
True
}),
(
'Restart (new)'
,
'restart_sampler'
,
[
'restart'
],
{
'scheduler'
:
'karras'
,
"second_order"
:
True
}),
]
@
torch
.
no_grad
()
def
restart_sampler
(
model
,
x
,
sigmas
,
extra_args
=
None
,
callback
=
None
,
disable
=
None
,
s_noise
=
1.
,
restart_list
=
None
):
"""Implements restart sampling in Restart Sampling for Improving Generative Processes (2023)"""
'''Restart_list format: {min_sigma: [ restart_steps, restart_times, max_sigma]}'''
'''If restart_list is None: will choose restart_list automatically, otherwise will use the given restart_list'''
from
tqdm.auto
import
trange
extra_args
=
{}
if
extra_args
is
None
else
extra_args
s_in
=
x
.
new_ones
([
x
.
shape
[
0
]])
step_id
=
0
from
k_diffusion.sampling
import
to_d
,
get_sigmas_karras
def
heun_step
(
x
,
old_sigma
,
new_sigma
,
second_order
=
True
):
nonlocal
step_id
denoised
=
model
(
x
,
old_sigma
*
s_in
,
**
extra_args
)
d
=
to_d
(
x
,
old_sigma
,
denoised
)
if
callback
is
not
None
:
callback
({
'x'
:
x
,
'i'
:
step_id
,
'sigma'
:
new_sigma
,
'sigma_hat'
:
old_sigma
,
'denoised'
:
denoised
})
dt
=
new_sigma
-
old_sigma
if
new_sigma
==
0
or
not
second_order
:
# Euler method
x
=
x
+
d
*
dt
else
:
# Heun's method
x_2
=
x
+
d
*
dt
denoised_2
=
model
(
x_2
,
new_sigma
*
s_in
,
**
extra_args
)
d_2
=
to_d
(
x_2
,
new_sigma
,
denoised_2
)
d_prime
=
(
d
+
d_2
)
/
2
x
=
x
+
d_prime
*
dt
step_id
+=
1
return
x
steps
=
sigmas
.
shape
[
0
]
-
1
if
restart_list
is
None
:
if
steps
>=
20
:
restart_steps
=
9
restart_times
=
1
if
steps
>=
36
:
restart_steps
=
steps
//
4
restart_times
=
2
sigmas
=
get_sigmas_karras
(
steps
-
restart_steps
*
restart_times
,
sigmas
[
-
2
]
.
item
(),
sigmas
[
0
]
.
item
(),
device
=
sigmas
.
device
)
restart_list
=
{
0.1
:
[
restart_steps
+
1
,
restart_times
,
2
]}
else
:
restart_list
=
dict
()
temp_list
=
dict
()
for
key
,
value
in
restart_list
.
items
():
temp_list
[
int
(
torch
.
argmin
(
abs
(
sigmas
-
key
),
dim
=
0
))]
=
value
restart_list
=
temp_list
step_list
=
[]
for
i
in
range
(
len
(
sigmas
)
-
1
):
step_list
.
append
((
sigmas
[
i
],
sigmas
[
i
+
1
]))
if
i
+
1
in
restart_list
:
restart_steps
,
restart_times
,
restart_max
=
restart_list
[
i
+
1
]
min_idx
=
i
+
1
max_idx
=
int
(
torch
.
argmin
(
abs
(
sigmas
-
restart_max
),
dim
=
0
))
if
max_idx
<
min_idx
:
sigma_restart
=
get_sigmas_karras
(
restart_steps
,
sigmas
[
min_idx
]
.
item
(),
sigmas
[
max_idx
]
.
item
(),
device
=
sigmas
.
device
)[:
-
1
]
while
restart_times
>
0
:
restart_times
-=
1
step_list
.
extend
([(
old_sigma
,
new_sigma
)
for
(
old_sigma
,
new_sigma
)
in
zip
(
sigma_restart
[:
-
1
],
sigma_restart
[
1
:])])
last_sigma
=
None
for
i
in
trange
(
len
(
step_list
),
disable
=
disable
):
if
last_sigma
is
None
:
last_sigma
=
step_list
[
i
][
0
]
elif
last_sigma
<
step_list
[
i
][
0
]:
x
=
x
+
k_diffusion
.
sampling
.
torch
.
randn_like
(
x
)
*
s_noise
*
(
step_list
[
i
][
0
]
**
2
-
last_sigma
**
2
)
**
0.5
x
=
heun_step
(
x
,
step_list
[
i
][
0
],
step_list
[
i
][
1
])
last_sigma
=
step_list
[
i
][
1
]
return
x
samplers_data_k_diffusion
=
[
sd_samplers_common
.
SamplerData
(
label
,
lambda
model
,
funcname
=
funcname
:
KDiffusionSampler
(
funcname
,
model
),
aliases
,
options
)
for
label
,
funcname
,
aliases
,
options
in
samplers_k_diffusion
if
hasattr
(
k_diffusion
.
sampling
,
funcname
)
if
(
hasattr
(
k_diffusion
.
sampling
,
funcname
)
or
funcname
==
'restart_sampler'
)
]
sampler_extra_params
=
{
...
...
@@ -270,7 +339,7 @@ class KDiffusionSampler:
self
.
model_wrap
=
denoiser
(
sd_model
,
quantize
=
shared
.
opts
.
enable_quantization
)
self
.
funcname
=
funcname
self
.
func
=
getattr
(
k_diffusion
.
sampling
,
self
.
funcname
)
self
.
func
=
getattr
(
k_diffusion
.
sampling
,
self
.
funcname
)
if
funcname
!=
"restart_sampler"
else
restart_sampler
self
.
extra_params
=
sampler_extra_params
.
get
(
funcname
,
[])
self
.
model_wrap_cfg
=
CFGDenoiser
(
self
.
model_wrap
)
self
.
sampler_noises
=
None
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment