Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Sign in / Register
Toggle navigation
S
Stable Diffusion Webui
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Locked Files
Issues
0
Issues
0
List
Boards
Labels
Service Desk
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Security & Compliance
Security & Compliance
Dependency List
License Compliance
Packages
Packages
List
Container Registry
Analytics
Analytics
CI / CD
Code Review
Insights
Issues
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
novelai-storage
Stable Diffusion Webui
Commits
bdd57ad0
Commit
bdd57ad0
authored
Jan 09, 2023
by
AUTOMATIC1111
Committed by
GitHub
Jan 09, 2023
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #6481 from guaneec/varsize
Allow mixed image sizes in TI/HN training
parents
2b94ec78
18c00179
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
21 additions
and
15 deletions
+21
-15
modules/hypernetworks/hypernetwork.py
modules/hypernetworks/hypernetwork.py
+2
-2
modules/textual_inversion/dataset.py
modules/textual_inversion/dataset.py
+12
-8
modules/textual_inversion/textual_inversion.py
modules/textual_inversion/textual_inversion.py
+4
-5
modules/ui.py
modules/ui.py
+3
-0
No files found.
modules/hypernetworks/hypernetwork.py
View file @
bdd57ad0
...
@@ -403,7 +403,7 @@ def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None,
...
@@ -403,7 +403,7 @@ def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None,
shared
.
reload_hypernetworks
()
shared
.
reload_hypernetworks
()
def
train_hypernetwork
(
hypernetwork_name
,
learn_rate
,
batch_size
,
gradient_step
,
data_root
,
log_directory
,
training_width
,
training_height
,
steps
,
clip_grad_mode
,
clip_grad_value
,
shuffle_tags
,
tag_drop_out
,
latent_sampling_method
,
create_image_every
,
save_hypernetwork_every
,
template_file
,
preview_from_txt2img
,
preview_prompt
,
preview_negative_prompt
,
preview_steps
,
preview_sampler_index
,
preview_cfg_scale
,
preview_seed
,
preview_width
,
preview_height
):
def
train_hypernetwork
(
hypernetwork_name
,
learn_rate
,
batch_size
,
gradient_step
,
data_root
,
log_directory
,
training_width
,
training_height
,
varsize
,
steps
,
clip_grad_mode
,
clip_grad_value
,
shuffle_tags
,
tag_drop_out
,
latent_sampling_method
,
create_image_every
,
save_hypernetwork_every
,
template_file
,
preview_from_txt2img
,
preview_prompt
,
preview_negative_prompt
,
preview_steps
,
preview_sampler_index
,
preview_cfg_scale
,
preview_seed
,
preview_width
,
preview_height
):
# images allows training previews to have infotext. Importing it at the top causes a circular import problem.
# images allows training previews to have infotext. Importing it at the top causes a circular import problem.
from
modules
import
images
from
modules
import
images
...
@@ -456,7 +456,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step,
...
@@ -456,7 +456,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step,
pin_memory
=
shared
.
opts
.
pin_memory
pin_memory
=
shared
.
opts
.
pin_memory
ds
=
modules
.
textual_inversion
.
dataset
.
PersonalizedBase
(
data_root
=
data_root
,
width
=
training_width
,
height
=
training_height
,
repeats
=
shared
.
opts
.
training_image_repeats_per_epoch
,
placeholder_token
=
hypernetwork_name
,
model
=
shared
.
sd_model
,
cond_model
=
shared
.
sd_model
.
cond_stage_model
,
device
=
devices
.
device
,
template_file
=
template_file
,
include_cond
=
True
,
batch_size
=
batch_size
,
gradient_step
=
gradient_step
,
shuffle_tags
=
shuffle_tags
,
tag_drop_out
=
tag_drop_out
,
latent_sampling_method
=
latent_sampling_method
)
ds
=
modules
.
textual_inversion
.
dataset
.
PersonalizedBase
(
data_root
=
data_root
,
width
=
training_width
,
height
=
training_height
,
repeats
=
shared
.
opts
.
training_image_repeats_per_epoch
,
placeholder_token
=
hypernetwork_name
,
model
=
shared
.
sd_model
,
cond_model
=
shared
.
sd_model
.
cond_stage_model
,
device
=
devices
.
device
,
template_file
=
template_file
,
include_cond
=
True
,
batch_size
=
batch_size
,
gradient_step
=
gradient_step
,
shuffle_tags
=
shuffle_tags
,
tag_drop_out
=
tag_drop_out
,
latent_sampling_method
=
latent_sampling_method
,
varsize
=
varsize
)
if
shared
.
opts
.
save_training_settings_to_txt
:
if
shared
.
opts
.
save_training_settings_to_txt
:
saved_params
=
dict
(
saved_params
=
dict
(
...
...
modules/textual_inversion/dataset.py
View file @
bdd57ad0
...
@@ -17,7 +17,7 @@ re_numbers_at_start = re.compile(r"^[-\d]+\s*")
...
@@ -17,7 +17,7 @@ re_numbers_at_start = re.compile(r"^[-\d]+\s*")
class
DatasetEntry
:
class
DatasetEntry
:
def
__init__
(
self
,
filename
=
None
,
filename_text
=
None
,
latent_dist
=
None
,
latent_sample
=
None
,
cond
=
None
,
cond_text
=
None
,
pixel_values
=
None
):
def
__init__
(
self
,
filename
=
None
,
filename_text
=
None
,
latent_dist
=
None
,
latent_sample
=
None
,
cond
=
None
,
cond_text
=
None
,
pixel_values
=
None
,
img_shape
=
None
):
self
.
filename
=
filename
self
.
filename
=
filename
self
.
filename_text
=
filename_text
self
.
filename_text
=
filename_text
self
.
latent_dist
=
latent_dist
self
.
latent_dist
=
latent_dist
...
@@ -25,16 +25,15 @@ class DatasetEntry:
...
@@ -25,16 +25,15 @@ class DatasetEntry:
self
.
cond
=
cond
self
.
cond
=
cond
self
.
cond_text
=
cond_text
self
.
cond_text
=
cond_text
self
.
pixel_values
=
pixel_values
self
.
pixel_values
=
pixel_values
self
.
img_shape
=
img_shape
class
PersonalizedBase
(
Dataset
):
class
PersonalizedBase
(
Dataset
):
def
__init__
(
self
,
data_root
,
width
,
height
,
repeats
,
flip_p
=
0.5
,
placeholder_token
=
"*"
,
model
=
None
,
cond_model
=
None
,
device
=
None
,
template_file
=
None
,
include_cond
=
False
,
batch_size
=
1
,
gradient_step
=
1
,
shuffle_tags
=
False
,
tag_drop_out
=
0
,
latent_sampling_method
=
'once'
):
def
__init__
(
self
,
data_root
,
width
,
height
,
repeats
,
flip_p
=
0.5
,
placeholder_token
=
"*"
,
model
=
None
,
cond_model
=
None
,
device
=
None
,
template_file
=
None
,
include_cond
=
False
,
batch_size
=
1
,
gradient_step
=
1
,
shuffle_tags
=
False
,
tag_drop_out
=
0
,
latent_sampling_method
=
'once'
,
varsize
=
False
):
re_word
=
re
.
compile
(
shared
.
opts
.
dataset_filename_word_regex
)
if
len
(
shared
.
opts
.
dataset_filename_word_regex
)
>
0
else
None
re_word
=
re
.
compile
(
shared
.
opts
.
dataset_filename_word_regex
)
if
len
(
shared
.
opts
.
dataset_filename_word_regex
)
>
0
else
None
self
.
placeholder_token
=
placeholder_token
self
.
placeholder_token
=
placeholder_token
self
.
width
=
width
self
.
height
=
height
self
.
flip
=
transforms
.
RandomHorizontalFlip
(
p
=
flip_p
)
self
.
flip
=
transforms
.
RandomHorizontalFlip
(
p
=
flip_p
)
self
.
dataset
=
[]
self
.
dataset
=
[]
...
@@ -47,6 +46,8 @@ class PersonalizedBase(Dataset):
...
@@ -47,6 +46,8 @@ class PersonalizedBase(Dataset):
assert
data_root
,
'dataset directory not specified'
assert
data_root
,
'dataset directory not specified'
assert
os
.
path
.
isdir
(
data_root
),
"Dataset directory doesn't exist"
assert
os
.
path
.
isdir
(
data_root
),
"Dataset directory doesn't exist"
assert
os
.
listdir
(
data_root
),
"Dataset directory is empty"
assert
os
.
listdir
(
data_root
),
"Dataset directory is empty"
if
varsize
:
assert
batch_size
==
1
,
'variable img size must have batch size 1'
self
.
image_paths
=
[
os
.
path
.
join
(
data_root
,
file_path
)
for
file_path
in
os
.
listdir
(
data_root
)]
self
.
image_paths
=
[
os
.
path
.
join
(
data_root
,
file_path
)
for
file_path
in
os
.
listdir
(
data_root
)]
...
@@ -59,7 +60,9 @@ class PersonalizedBase(Dataset):
...
@@ -59,7 +60,9 @@ class PersonalizedBase(Dataset):
if
shared
.
state
.
interrupted
:
if
shared
.
state
.
interrupted
:
raise
Exception
(
"interrupted"
)
raise
Exception
(
"interrupted"
)
try
:
try
:
image
=
Image
.
open
(
path
)
.
convert
(
'RGB'
)
.
resize
((
self
.
width
,
self
.
height
),
PIL
.
Image
.
BICUBIC
)
image
=
Image
.
open
(
path
)
.
convert
(
'RGB'
)
if
not
varsize
:
image
=
image
.
resize
((
width
,
height
),
PIL
.
Image
.
BICUBIC
)
except
Exception
:
except
Exception
:
continue
continue
...
@@ -88,14 +91,14 @@ class PersonalizedBase(Dataset):
...
@@ -88,14 +91,14 @@ class PersonalizedBase(Dataset):
if
latent_sampling_method
==
"once"
or
(
latent_sampling_method
==
"deterministic"
and
not
isinstance
(
latent_dist
,
DiagonalGaussianDistribution
)):
if
latent_sampling_method
==
"once"
or
(
latent_sampling_method
==
"deterministic"
and
not
isinstance
(
latent_dist
,
DiagonalGaussianDistribution
)):
latent_sample
=
model
.
get_first_stage_encoding
(
latent_dist
)
.
squeeze
()
.
to
(
devices
.
cpu
)
latent_sample
=
model
.
get_first_stage_encoding
(
latent_dist
)
.
squeeze
()
.
to
(
devices
.
cpu
)
latent_sampling_method
=
"once"
latent_sampling_method
=
"once"
entry
=
DatasetEntry
(
filename
=
path
,
filename_text
=
filename_text
,
latent_sample
=
latent_sample
)
entry
=
DatasetEntry
(
filename
=
path
,
filename_text
=
filename_text
,
latent_sample
=
latent_sample
,
img_shape
=
image
.
size
)
elif
latent_sampling_method
==
"deterministic"
:
elif
latent_sampling_method
==
"deterministic"
:
# Works only for DiagonalGaussianDistribution
# Works only for DiagonalGaussianDistribution
latent_dist
.
std
=
0
latent_dist
.
std
=
0
latent_sample
=
model
.
get_first_stage_encoding
(
latent_dist
)
.
squeeze
()
.
to
(
devices
.
cpu
)
latent_sample
=
model
.
get_first_stage_encoding
(
latent_dist
)
.
squeeze
()
.
to
(
devices
.
cpu
)
entry
=
DatasetEntry
(
filename
=
path
,
filename_text
=
filename_text
,
latent_sample
=
latent_sample
)
entry
=
DatasetEntry
(
filename
=
path
,
filename_text
=
filename_text
,
latent_sample
=
latent_sample
,
img_shape
=
image
.
size
)
elif
latent_sampling_method
==
"random"
:
elif
latent_sampling_method
==
"random"
:
entry
=
DatasetEntry
(
filename
=
path
,
filename_text
=
filename_text
,
latent_dist
=
latent_dist
)
entry
=
DatasetEntry
(
filename
=
path
,
filename_text
=
filename_text
,
latent_dist
=
latent_dist
,
img_shape
=
image
.
size
)
if
not
(
self
.
tag_drop_out
!=
0
or
self
.
shuffle_tags
):
if
not
(
self
.
tag_drop_out
!=
0
or
self
.
shuffle_tags
):
entry
.
cond_text
=
self
.
create_text
(
filename_text
)
entry
.
cond_text
=
self
.
create_text
(
filename_text
)
...
@@ -151,6 +154,7 @@ class BatchLoader:
...
@@ -151,6 +154,7 @@ class BatchLoader:
self
.
cond_text
=
[
entry
.
cond_text
for
entry
in
data
]
self
.
cond_text
=
[
entry
.
cond_text
for
entry
in
data
]
self
.
cond
=
[
entry
.
cond
for
entry
in
data
]
self
.
cond
=
[
entry
.
cond
for
entry
in
data
]
self
.
latent_sample
=
torch
.
stack
([
entry
.
latent_sample
for
entry
in
data
])
.
squeeze
(
1
)
self
.
latent_sample
=
torch
.
stack
([
entry
.
latent_sample
for
entry
in
data
])
.
squeeze
(
1
)
self
.
img_shape
=
[
entry
.
img_shape
for
entry
in
data
]
#self.emb_index = [entry.emb_index for entry in data]
#self.emb_index = [entry.emb_index for entry in data]
#print(self.latent_sample.device)
#print(self.latent_sample.device)
...
...
modules/textual_inversion/textual_inversion.py
View file @
bdd57ad0
...
@@ -296,8 +296,7 @@ def validate_train_inputs(model_name, learn_rate, batch_size, gradient_step, dat
...
@@ -296,8 +296,7 @@ def validate_train_inputs(model_name, learn_rate, batch_size, gradient_step, dat
if
save_model_every
or
create_image_every
:
if
save_model_every
or
create_image_every
:
assert
log_directory
,
"Log directory is empty"
assert
log_directory
,
"Log directory is empty"
def
train_embedding
(
embedding_name
,
learn_rate
,
batch_size
,
gradient_step
,
data_root
,
log_directory
,
training_width
,
training_height
,
varsize
,
steps
,
clip_grad_mode
,
clip_grad_value
,
shuffle_tags
,
tag_drop_out
,
latent_sampling_method
,
create_image_every
,
save_embedding_every
,
template_file
,
save_image_with_stored_embedding
,
preview_from_txt2img
,
preview_prompt
,
preview_negative_prompt
,
preview_steps
,
preview_sampler_index
,
preview_cfg_scale
,
preview_seed
,
preview_width
,
preview_height
):
def
train_embedding
(
embedding_name
,
learn_rate
,
batch_size
,
gradient_step
,
data_root
,
log_directory
,
training_width
,
training_height
,
steps
,
clip_grad_mode
,
clip_grad_value
,
shuffle_tags
,
tag_drop_out
,
latent_sampling_method
,
create_image_every
,
save_embedding_every
,
template_file
,
save_image_with_stored_embedding
,
preview_from_txt2img
,
preview_prompt
,
preview_negative_prompt
,
preview_steps
,
preview_sampler_index
,
preview_cfg_scale
,
preview_seed
,
preview_width
,
preview_height
):
save_embedding_every
=
save_embedding_every
or
0
save_embedding_every
=
save_embedding_every
or
0
create_image_every
=
create_image_every
or
0
create_image_every
=
create_image_every
or
0
validate_train_inputs
(
embedding_name
,
learn_rate
,
batch_size
,
gradient_step
,
data_root
,
template_file
,
steps
,
save_embedding_every
,
create_image_every
,
log_directory
,
name
=
"embedding"
)
validate_train_inputs
(
embedding_name
,
learn_rate
,
batch_size
,
gradient_step
,
data_root
,
template_file
,
steps
,
save_embedding_every
,
create_image_every
,
log_directory
,
name
=
"embedding"
)
...
@@ -351,7 +350,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
...
@@ -351,7 +350,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
pin_memory
=
shared
.
opts
.
pin_memory
pin_memory
=
shared
.
opts
.
pin_memory
ds
=
modules
.
textual_inversion
.
dataset
.
PersonalizedBase
(
data_root
=
data_root
,
width
=
training_width
,
height
=
training_height
,
repeats
=
shared
.
opts
.
training_image_repeats_per_epoch
,
placeholder_token
=
embedding_name
,
model
=
shared
.
sd_model
,
cond_model
=
shared
.
sd_model
.
cond_stage_model
,
device
=
devices
.
device
,
template_file
=
template_file
,
batch_size
=
batch_size
,
gradient_step
=
gradient_step
,
shuffle_tags
=
shuffle_tags
,
tag_drop_out
=
tag_drop_out
,
latent_sampling_method
=
latent_sampling_method
)
ds
=
modules
.
textual_inversion
.
dataset
.
PersonalizedBase
(
data_root
=
data_root
,
width
=
training_width
,
height
=
training_height
,
repeats
=
shared
.
opts
.
training_image_repeats_per_epoch
,
placeholder_token
=
embedding_name
,
model
=
shared
.
sd_model
,
cond_model
=
shared
.
sd_model
.
cond_stage_model
,
device
=
devices
.
device
,
template_file
=
template_file
,
batch_size
=
batch_size
,
gradient_step
=
gradient_step
,
shuffle_tags
=
shuffle_tags
,
tag_drop_out
=
tag_drop_out
,
latent_sampling_method
=
latent_sampling_method
,
varsize
=
varsize
)
if
shared
.
opts
.
save_training_settings_to_txt
:
if
shared
.
opts
.
save_training_settings_to_txt
:
save_settings_to_file
(
log_directory
,
{
**
dict
(
model_name
=
checkpoint
.
model_name
,
model_hash
=
checkpoint
.
hash
,
num_of_dataset_images
=
len
(
ds
),
num_vectors_per_token
=
len
(
embedding
.
vec
)),
**
locals
()})
save_settings_to_file
(
log_directory
,
{
**
dict
(
model_name
=
checkpoint
.
model_name
,
model_hash
=
checkpoint
.
hash
,
num_of_dataset_images
=
len
(
ds
),
num_vectors_per_token
=
len
(
embedding
.
vec
)),
**
locals
()})
...
@@ -493,8 +492,8 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
...
@@ -493,8 +492,8 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
else
:
else
:
p
.
prompt
=
batch
.
cond_text
[
0
]
p
.
prompt
=
batch
.
cond_text
[
0
]
p
.
steps
=
20
p
.
steps
=
20
p
.
width
=
training_width
p
.
width
=
batch
.
img_shape
[
0
][
0
]
p
.
height
=
training_height
p
.
height
=
batch
.
img_shape
[
0
][
1
]
preview_text
=
p
.
prompt
preview_text
=
p
.
prompt
...
...
modules/ui.py
View file @
bdd57ad0
...
@@ -1348,6 +1348,7 @@ def create_ui():
...
@@ -1348,6 +1348,7 @@ def create_ui():
template_file
=
gr
.
Textbox
(
label
=
'Prompt template file'
,
value
=
os
.
path
.
join
(
script_path
,
"textual_inversion_templates"
,
"style_filewords.txt"
),
elem_id
=
"train_template_file"
)
template_file
=
gr
.
Textbox
(
label
=
'Prompt template file'
,
value
=
os
.
path
.
join
(
script_path
,
"textual_inversion_templates"
,
"style_filewords.txt"
),
elem_id
=
"train_template_file"
)
training_width
=
gr
.
Slider
(
minimum
=
64
,
maximum
=
2048
,
step
=
8
,
label
=
"Width"
,
value
=
512
,
elem_id
=
"train_training_width"
)
training_width
=
gr
.
Slider
(
minimum
=
64
,
maximum
=
2048
,
step
=
8
,
label
=
"Width"
,
value
=
512
,
elem_id
=
"train_training_width"
)
training_height
=
gr
.
Slider
(
minimum
=
64
,
maximum
=
2048
,
step
=
8
,
label
=
"Height"
,
value
=
512
,
elem_id
=
"train_training_height"
)
training_height
=
gr
.
Slider
(
minimum
=
64
,
maximum
=
2048
,
step
=
8
,
label
=
"Height"
,
value
=
512
,
elem_id
=
"train_training_height"
)
varsize
=
gr
.
Checkbox
(
label
=
"Ignore dimension settings and do not resize images"
,
value
=
False
,
elem_id
=
"train_varsize"
)
steps
=
gr
.
Number
(
label
=
'Max steps'
,
value
=
100000
,
precision
=
0
,
elem_id
=
"train_steps"
)
steps
=
gr
.
Number
(
label
=
'Max steps'
,
value
=
100000
,
precision
=
0
,
elem_id
=
"train_steps"
)
with
FormRow
():
with
FormRow
():
...
@@ -1454,6 +1455,7 @@ def create_ui():
...
@@ -1454,6 +1455,7 @@ def create_ui():
log_directory
,
log_directory
,
training_width
,
training_width
,
training_height
,
training_height
,
varsize
,
steps
,
steps
,
clip_grad_mode
,
clip_grad_mode
,
clip_grad_value
,
clip_grad_value
,
...
@@ -1485,6 +1487,7 @@ def create_ui():
...
@@ -1485,6 +1487,7 @@ def create_ui():
log_directory
,
log_directory
,
training_width
,
training_width
,
training_height
,
training_height
,
varsize
,
steps
,
steps
,
clip_grad_mode
,
clip_grad_mode
,
clip_grad_value
,
clip_grad_value
,
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment