Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Sign in / Register
Toggle navigation
S
Stable Diffusion Webui
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Locked Files
Issues
0
Issues
0
List
Boards
Labels
Service Desk
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Security & Compliance
Security & Compliance
Dependency List
License Compliance
Packages
Packages
List
Container Registry
Analytics
Analytics
CI / CD
Code Review
Insights
Issues
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
novelai-storage
Stable Diffusion Webui
Commits
7edd50f3
Commit
7edd50f3
authored
Nov 04, 2023
by
v0xie
Committed by
GitHub
Nov 04, 2023
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #2 from v0xie/network-oft-change-impl
Use same updown implementation for LyCORIS OFT as kohya-ss OFT
parents
1dd25be0
bbf00a96
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
27 additions
and
17 deletions
+27
-17
extensions-builtin/Lora/network_oft.py
extensions-builtin/Lora/network_oft.py
+27
-17
No files found.
extensions-builtin/Lora/network_oft.py
View file @
7edd50f3
...
@@ -24,12 +24,14 @@ class NetworkModuleOFT(network.NetworkModule):
...
@@ -24,12 +24,14 @@ class NetworkModuleOFT(network.NetworkModule):
# kohya-ss
# kohya-ss
if
"oft_blocks"
in
weights
.
w
.
keys
():
if
"oft_blocks"
in
weights
.
w
.
keys
():
self
.
is_kohya
=
True
self
.
is_kohya
=
True
self
.
oft_blocks
=
weights
.
w
[
"oft_blocks"
]
self
.
oft_blocks
=
weights
.
w
[
"oft_blocks"
]
# (num_blocks, block_size, block_size)
self
.
alpha
=
weights
.
w
[
"alpha"
]
self
.
alpha
=
weights
.
w
[
"alpha"
]
self
.
dim
=
self
.
oft_blocks
.
shape
[
0
]
self
.
dim
=
self
.
oft_blocks
.
shape
[
0
]
# lora dim
#self.oft_blocks = rearrange(self.oft_blocks, 'k m ... -> (k m) ...')
elif
"oft_diag"
in
weights
.
w
.
keys
():
elif
"oft_diag"
in
weights
.
w
.
keys
():
self
.
is_kohya
=
False
self
.
is_kohya
=
False
self
.
oft_blocks
=
weights
.
w
[
"oft_diag"
]
self
.
oft_blocks
=
weights
.
w
[
"oft_diag"
]
# (num_blocks, block_size, block_size)
# alpha is rank if alpha is 0 or None
# alpha is rank if alpha is 0 or None
if
self
.
alpha
is
None
:
if
self
.
alpha
is
None
:
pass
pass
...
@@ -51,12 +53,11 @@ class NetworkModuleOFT(network.NetworkModule):
...
@@ -51,12 +53,11 @@ class NetworkModuleOFT(network.NetworkModule):
raise
ValueError
(
"sd_module must be Linear or Conv"
)
raise
ValueError
(
"sd_module must be Linear or Conv"
)
if
self
.
is_kohya
:
if
self
.
is_kohya
:
self
.
num_blocks
=
self
.
dim
self
.
block_size
=
self
.
out_dim
//
self
.
num_blocks
self
.
constraint
=
self
.
alpha
*
self
.
out_dim
self
.
constraint
=
self
.
alpha
*
self
.
out_dim
self
.
num_blocks
,
self
.
block_size
=
factorization
(
self
.
out_dim
,
self
.
dim
)
else
:
else
:
self
.
block_size
,
self
.
num_blocks
=
factorization
(
self
.
out_dim
,
self
.
dim
)
self
.
constraint
=
None
self
.
constraint
=
None
self
.
block_size
,
self
.
num_blocks
=
factorization
(
self
.
out_dim
,
self
.
dim
)
def
merge_weight
(
self
,
R_weight
,
org_weight
):
def
merge_weight
(
self
,
R_weight
,
org_weight
):
R_weight
=
R_weight
.
to
(
org_weight
.
device
,
dtype
=
org_weight
.
dtype
)
R_weight
=
R_weight
.
to
(
org_weight
.
device
,
dtype
=
org_weight
.
dtype
)
...
@@ -77,7 +78,8 @@ class NetworkModuleOFT(network.NetworkModule):
...
@@ -77,7 +78,8 @@ class NetworkModuleOFT(network.NetworkModule):
else
:
else
:
new_norm_Q
=
norm_Q
new_norm_Q
=
norm_Q
block_Q
=
block_Q
*
((
new_norm_Q
+
1e-8
)
/
(
norm_Q
+
1e-8
))
block_Q
=
block_Q
*
((
new_norm_Q
+
1e-8
)
/
(
norm_Q
+
1e-8
))
m_I
=
torch
.
eye
(
self
.
block_size
,
device
=
oft_blocks
.
device
)
.
unsqueeze
(
0
)
.
repeat
(
self
.
num_blocks
,
1
,
1
)
m_I
=
torch
.
eye
(
self
.
num_blocks
,
device
=
oft_blocks
.
device
)
.
unsqueeze
(
0
)
.
repeat
(
self
.
block_size
,
1
,
1
)
#m_I = torch.eye(self.block_size, device=oft_blocks.device).unsqueeze(0).repeat(self.num_blocks, 1, 1)
block_R
=
torch
.
matmul
(
m_I
+
block_Q
,
(
m_I
-
block_Q
)
.
inverse
())
block_R
=
torch
.
matmul
(
m_I
+
block_Q
,
(
m_I
-
block_Q
)
.
inverse
())
block_R_weighted
=
multiplier
*
block_R
+
(
1
-
multiplier
)
*
m_I
block_R_weighted
=
multiplier
*
block_R
+
(
1
-
multiplier
)
*
m_I
...
@@ -97,25 +99,33 @@ class NetworkModuleOFT(network.NetworkModule):
...
@@ -97,25 +99,33 @@ class NetworkModuleOFT(network.NetworkModule):
is_other_linear
=
type
(
self
.
sd_module
)
in
[
torch
.
nn
.
MultiheadAttention
]
is_other_linear
=
type
(
self
.
sd_module
)
in
[
torch
.
nn
.
MultiheadAttention
]
if
not
is_other_linear
:
if
not
is_other_linear
:
if
is_other_linear
and
orig_weight
.
shape
[
0
]
!=
orig_weight
.
shape
[
1
]:
#if is_other_linear and orig_weight.shape[0] != orig_weight.shape[1]:
orig_weight
=
orig_weight
.
permute
(
1
,
0
)
# orig_weight=orig_weight.permute(1, 0)
oft_blocks
=
self
.
oft_blocks
.
to
(
orig_weight
.
device
,
dtype
=
orig_weight
.
dtype
)
# without this line the results are significantly worse / less accurate
oft_blocks
=
oft_blocks
-
oft_blocks
.
transpose
(
1
,
2
)
R
=
oft_blocks
.
to
(
orig_weight
.
device
,
dtype
=
orig_weight
.
dtype
)
R
=
R
*
multiplier
+
torch
.
eye
(
self
.
block_size
,
device
=
orig_weight
.
device
)
R
=
self
.
oft_blocks
.
to
(
orig_weight
.
device
,
dtype
=
orig_weight
.
dtype
)
merged_weight
=
rearrange
(
orig_weight
,
'(k n) ... -> k n ...'
,
k
=
self
.
num_blocks
,
n
=
self
.
block_size
)
merged_weight
=
rearrange
(
orig_weight
,
'(k n) ... -> k n ...'
,
k
=
self
.
num_blocks
,
n
=
self
.
block_size
)
merged_weight
=
torch
.
einsum
(
merged_weight
=
torch
.
einsum
(
'k n m, k n ... -> k m ...'
,
'k n m, k n ... -> k m ...'
,
R
*
multiplier
+
torch
.
eye
(
self
.
block_size
,
device
=
orig_weight
.
device
)
,
R
,
merged_weight
merged_weight
)
)
merged_weight
=
rearrange
(
merged_weight
,
'k m ... -> (k m) ...'
)
merged_weight
=
rearrange
(
merged_weight
,
'k m ... -> (k m) ...'
)
if
is_other_linear
and
orig_weight
.
shape
[
0
]
!=
orig_weight
.
shape
[
1
]:
#
if is_other_linear and orig_weight.shape[0] != orig_weight.shape[1]:
orig_weight
=
orig_weight
.
permute
(
1
,
0
)
#
orig_weight=orig_weight.permute(1, 0)
updown
=
merged_weight
.
to
(
orig_weight
.
device
,
dtype
=
orig_weight
.
dtype
)
-
orig_weight
updown
=
merged_weight
.
to
(
orig_weight
.
device
,
dtype
=
orig_weight
.
dtype
)
-
orig_weight
output_shape
=
orig_weight
.
shape
output_shape
=
orig_weight
.
shape
else
:
else
:
# FIXME: skip MultiheadAttention for now
# FIXME: skip MultiheadAttention for now
#up = self.lin_module.weight.to(orig_weight.device, dtype=orig_weight.dtype)
updown
=
torch
.
zeros
([
orig_weight
.
shape
[
1
],
orig_weight
.
shape
[
1
]],
device
=
orig_weight
.
device
,
dtype
=
orig_weight
.
dtype
)
updown
=
torch
.
zeros
([
orig_weight
.
shape
[
1
],
orig_weight
.
shape
[
1
]],
device
=
orig_weight
.
device
,
dtype
=
orig_weight
.
dtype
)
output_shape
=
(
orig_weight
.
shape
[
1
],
orig_weight
.
shape
[
1
])
output_shape
=
(
orig_weight
.
shape
[
1
],
orig_weight
.
shape
[
1
])
...
@@ -123,10 +133,10 @@ class NetworkModuleOFT(network.NetworkModule):
...
@@ -123,10 +133,10 @@ class NetworkModuleOFT(network.NetworkModule):
def
calc_updown
(
self
,
orig_weight
):
def
calc_updown
(
self
,
orig_weight
):
multiplier
=
self
.
multiplier
()
*
self
.
calc_scale
()
multiplier
=
self
.
multiplier
()
*
self
.
calc_scale
()
if
self
.
is_kohya
:
#
if self.is_kohya:
return
self
.
calc_updown_kohya
(
orig_weight
,
multiplier
)
#
return self.calc_updown_kohya(orig_weight, multiplier)
else
:
#
else:
return
self
.
calc_updown_kb
(
orig_weight
,
multiplier
)
return
self
.
calc_updown_kb
(
orig_weight
,
multiplier
)
# override to remove the multiplier/scale factor; it's already multiplied in get_weight
# override to remove the multiplier/scale factor; it's already multiplied in get_weight
def
finalize_updown
(
self
,
updown
,
orig_weight
,
output_shape
,
ex_bias
=
None
):
def
finalize_updown
(
self
,
updown
,
orig_weight
,
output_shape
,
ex_bias
=
None
):
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment