Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Sign in / Register
Toggle navigation
S
Stable Diffusion Webui
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Locked Files
Issues
0
Issues
0
List
Boards
Labels
Service Desk
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Security & Compliance
Security & Compliance
Dependency List
License Compliance
Packages
Packages
List
Container Registry
Analytics
Analytics
CI / CD
Code Review
Insights
Issues
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
novelai-storage
Stable Diffusion Webui
Commits
79d6e9cd
Commit
79d6e9cd
authored
Jul 29, 2023
by
AUTOMATIC1111
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
some stylistic changes for the sampler code
parent
aefe1325
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
22 additions
and
18 deletions
+22
-18
modules/sd_samplers_extra.py
modules/sd_samplers_extra.py
+22
-18
No files found.
modules/sd_samplers_extra.py
View file @
79d6e9cd
import
torch
import
torch
import
tqdm
import
k_diffusion.sampling
import
k_diffusion.sampling
@
torch
.
no_grad
()
@
torch
.
no_grad
()
def
restart_sampler
(
model
,
x
,
sigmas
,
extra_args
=
None
,
callback
=
None
,
disable
=
None
,
s_noise
=
1.
,
restart_list
=
None
):
def
restart_sampler
(
model
,
x
,
sigmas
,
extra_args
=
None
,
callback
=
None
,
disable
=
None
,
s_noise
=
1.
,
restart_list
=
None
):
"""Implements restart sampling in Restart Sampling for Improving Generative Processes (2023)
"""
"""Implements restart sampling in Restart Sampling for Improving Generative Processes (2023)
'''Restart_list format: {min_sigma: [ restart_steps, restart_times, max_sigma]}'''
Restart_list format: {min_sigma: [ restart_steps, restart_times, max_sigma]}
'''If restart_list is None: will choose restart_list automatically, otherwise will use the given restart_list'''
If restart_list is None: will choose restart_list automatically, otherwise will use the given restart_list
from
tqdm.auto
import
trange
"""
extra_args
=
{}
if
extra_args
is
None
else
extra_args
extra_args
=
{}
if
extra_args
is
None
else
extra_args
s_in
=
x
.
new_ones
([
x
.
shape
[
0
]])
s_in
=
x
.
new_ones
([
x
.
shape
[
0
]])
step_id
=
0
step_id
=
0
from
k_diffusion.sampling
import
to_d
,
get_sigmas_karras
from
k_diffusion.sampling
import
to_d
,
get_sigmas_karras
def
heun_step
(
x
,
old_sigma
,
new_sigma
,
second_order
=
True
):
def
heun_step
(
x
,
old_sigma
,
new_sigma
,
second_order
=
True
):
nonlocal
step_id
nonlocal
step_id
denoised
=
model
(
x
,
old_sigma
*
s_in
,
**
extra_args
)
denoised
=
model
(
x
,
old_sigma
*
s_in
,
**
extra_args
)
d
=
to_d
(
x
,
old_sigma
,
denoised
)
d
=
to_d
(
x
,
old_sigma
,
denoised
)
...
@@ -30,6 +33,7 @@ def restart_sampler(model, x, sigmas, extra_args=None, callback=None, disable=No
...
@@ -30,6 +33,7 @@ def restart_sampler(model, x, sigmas, extra_args=None, callback=None, disable=No
x
=
x
+
d_prime
*
dt
x
=
x
+
d_prime
*
dt
step_id
+=
1
step_id
+=
1
return
x
return
x
steps
=
sigmas
.
shape
[
0
]
-
1
steps
=
sigmas
.
shape
[
0
]
-
1
if
restart_list
is
None
:
if
restart_list
is
None
:
if
steps
>=
20
:
if
steps
>=
20
:
...
@@ -41,11 +45,10 @@ def restart_sampler(model, x, sigmas, extra_args=None, callback=None, disable=No
...
@@ -41,11 +45,10 @@ def restart_sampler(model, x, sigmas, extra_args=None, callback=None, disable=No
sigmas
=
get_sigmas_karras
(
steps
-
restart_steps
*
restart_times
,
sigmas
[
-
2
]
.
item
(),
sigmas
[
0
]
.
item
(),
device
=
sigmas
.
device
)
sigmas
=
get_sigmas_karras
(
steps
-
restart_steps
*
restart_times
,
sigmas
[
-
2
]
.
item
(),
sigmas
[
0
]
.
item
(),
device
=
sigmas
.
device
)
restart_list
=
{
0.1
:
[
restart_steps
+
1
,
restart_times
,
2
]}
restart_list
=
{
0.1
:
[
restart_steps
+
1
,
restart_times
,
2
]}
else
:
else
:
restart_list
=
dict
()
restart_list
=
{}
temp_list
=
dict
()
for
key
,
value
in
restart_list
.
items
():
restart_list
=
{
int
(
torch
.
argmin
(
abs
(
sigmas
-
key
),
dim
=
0
)):
value
for
key
,
value
in
restart_list
.
items
()}
temp_list
[
int
(
torch
.
argmin
(
abs
(
sigmas
-
key
),
dim
=
0
))]
=
value
restart_list
=
temp_list
step_list
=
[]
step_list
=
[]
for
i
in
range
(
len
(
sigmas
)
-
1
):
for
i
in
range
(
len
(
sigmas
)
-
1
):
step_list
.
append
((
sigmas
[
i
],
sigmas
[
i
+
1
]))
step_list
.
append
((
sigmas
[
i
],
sigmas
[
i
+
1
]))
...
@@ -58,13 +61,14 @@ def restart_sampler(model, x, sigmas, extra_args=None, callback=None, disable=No
...
@@ -58,13 +61,14 @@ def restart_sampler(model, x, sigmas, extra_args=None, callback=None, disable=No
while
restart_times
>
0
:
while
restart_times
>
0
:
restart_times
-=
1
restart_times
-=
1
step_list
.
extend
([(
old_sigma
,
new_sigma
)
for
(
old_sigma
,
new_sigma
)
in
zip
(
sigma_restart
[:
-
1
],
sigma_restart
[
1
:])])
step_list
.
extend
([(
old_sigma
,
new_sigma
)
for
(
old_sigma
,
new_sigma
)
in
zip
(
sigma_restart
[:
-
1
],
sigma_restart
[
1
:])])
last_sigma
=
None
last_sigma
=
None
for
i
in
trange
(
len
(
step_list
)
,
disable
=
disable
):
for
old_sigma
,
new_sigma
in
tqdm
.
tqdm
(
step_list
,
disable
=
disable
):
if
last_sigma
is
None
:
if
last_sigma
is
None
:
last_sigma
=
step_list
[
i
][
0
]
last_sigma
=
old_sigma
elif
last_sigma
<
step_list
[
i
][
0
]:
elif
last_sigma
<
old_sigma
:
x
=
x
+
k_diffusion
.
sampling
.
torch
.
randn_like
(
x
)
*
s_noise
*
(
step_list
[
i
][
0
]
**
2
-
last_sigma
**
2
)
**
0.5
x
=
x
+
k_diffusion
.
sampling
.
torch
.
randn_like
(
x
)
*
s_noise
*
(
old_sigma
**
2
-
last_sigma
**
2
)
**
0.5
x
=
heun_step
(
x
,
step_list
[
i
][
0
],
step_list
[
i
][
1
])
x
=
heun_step
(
x
,
old_sigma
,
new_sigma
)
last_sigma
=
step_list
[
i
][
1
]
last_sigma
=
new_sigma
return
x
return
x
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment