Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Sign in / Register
Toggle navigation
S
Stable Diffusion Webui
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Locked Files
Issues
0
Issues
0
List
Boards
Labels
Service Desk
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Security & Compliance
Security & Compliance
Dependency List
License Compliance
Packages
Packages
List
Container Registry
Analytics
Analytics
CI / CD
Code Review
Insights
Issues
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
novelai-storage
Stable Diffusion Webui
Commits
708c3a7b
Commit
708c3a7b
authored
Oct 20, 2022
by
random_thoughtss
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added PLMS hijack and made sure to always replace methods
parent
92a17a7a
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
157 additions
and
9 deletions
+157
-9
modules/sd_hijack_inpainting.py
modules/sd_hijack_inpainting.py
+156
-7
modules/sd_models.py
modules/sd_models.py
+1
-2
No files found.
modules/sd_hijack_inpainting.py
View file @
708c3a7b
import
torch
import
torch
import
numpy
as
np
from
tqdm
import
tqdm
from
einops
import
repeat
from
einops
import
rearrange
,
repeat
from
omegaconf
import
ListConfig
from
omegaconf
import
ListConfig
from
types
import
MethodType
import
ldm.models.diffusion.ddpm
import
ldm.models.diffusion.ddpm
import
ldm.models.diffusion.ddim
import
ldm.models.diffusion.ddim
import
ldm.models.diffusion.plms
from
ldm.models.diffusion.ddpm
import
LatentDiffusion
from
ldm.models.diffusion.ddpm
import
LatentDiffusion
from
ldm.models.diffusion.plms
import
PLMSSampler
from
ldm.models.diffusion.ddim
import
DDIMSampler
,
noise_like
from
ldm.models.diffusion.ddim
import
DDIMSampler
,
noise_like
# =================================================================================================
# =================================================================================================
...
@@ -19,7 +17,7 @@ from ldm.models.diffusion.ddim import DDIMSampler, noise_like
...
@@ -19,7 +17,7 @@ from ldm.models.diffusion.ddim import DDIMSampler, noise_like
# https://github.com/runwayml/stable-diffusion/blob/main/ldm/models/diffusion/ddim.py
# https://github.com/runwayml/stable-diffusion/blob/main/ldm/models/diffusion/ddim.py
# =================================================================================================
# =================================================================================================
@
torch
.
no_grad
()
@
torch
.
no_grad
()
def
sample
(
self
,
def
sample
_ddim
(
self
,
S
,
S
,
batch_size
,
batch_size
,
shape
,
shape
,
...
@@ -132,6 +130,153 @@ def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=F
...
@@ -132,6 +130,153 @@ def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=F
return
x_prev
,
pred_x0
return
x_prev
,
pred_x0
# =================================================================================================
# Monkey patch PLMSSampler methods.
# This one was not actually patched correctly in the RunwayML repo, but we can replicate the changes.
# Adapted from:
# https://github.com/CompVis/stable-diffusion/blob/main/ldm/models/diffusion/plms.py
# =================================================================================================
@
torch
.
no_grad
()
def
sample_plms
(
self
,
S
,
batch_size
,
shape
,
conditioning
=
None
,
callback
=
None
,
normals_sequence
=
None
,
img_callback
=
None
,
quantize_x0
=
False
,
eta
=
0.
,
mask
=
None
,
x0
=
None
,
temperature
=
1.
,
noise_dropout
=
0.
,
score_corrector
=
None
,
corrector_kwargs
=
None
,
verbose
=
True
,
x_T
=
None
,
log_every_t
=
100
,
unconditional_guidance_scale
=
1.
,
unconditional_conditioning
=
None
,
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
**
kwargs
):
if
conditioning
is
not
None
:
if
isinstance
(
conditioning
,
dict
):
ctmp
=
conditioning
[
list
(
conditioning
.
keys
())[
0
]]
while
isinstance
(
ctmp
,
list
):
ctmp
=
ctmp
[
0
]
cbs
=
ctmp
.
shape
[
0
]
if
cbs
!=
batch_size
:
print
(
f
"Warning: Got {cbs} conditionings but batch-size is {batch_size}"
)
else
:
if
conditioning
.
shape
[
0
]
!=
batch_size
:
print
(
f
"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}"
)
self
.
make_schedule
(
ddim_num_steps
=
S
,
ddim_eta
=
eta
,
verbose
=
verbose
)
# sampling
C
,
H
,
W
=
shape
size
=
(
batch_size
,
C
,
H
,
W
)
print
(
f
'Data shape for PLMS sampling is {size}'
)
samples
,
intermediates
=
self
.
plms_sampling
(
conditioning
,
size
,
callback
=
callback
,
img_callback
=
img_callback
,
quantize_denoised
=
quantize_x0
,
mask
=
mask
,
x0
=
x0
,
ddim_use_original_steps
=
False
,
noise_dropout
=
noise_dropout
,
temperature
=
temperature
,
score_corrector
=
score_corrector
,
corrector_kwargs
=
corrector_kwargs
,
x_T
=
x_T
,
log_every_t
=
log_every_t
,
unconditional_guidance_scale
=
unconditional_guidance_scale
,
unconditional_conditioning
=
unconditional_conditioning
,
)
return
samples
,
intermediates
@
torch
.
no_grad
()
def
p_sample_plms
(
self
,
x
,
c
,
t
,
index
,
repeat_noise
=
False
,
use_original_steps
=
False
,
quantize_denoised
=
False
,
temperature
=
1.
,
noise_dropout
=
0.
,
score_corrector
=
None
,
corrector_kwargs
=
None
,
unconditional_guidance_scale
=
1.
,
unconditional_conditioning
=
None
,
old_eps
=
None
,
t_next
=
None
):
b
,
*
_
,
device
=
*
x
.
shape
,
x
.
device
def
get_model_output
(
x
,
t
):
if
unconditional_conditioning
is
None
or
unconditional_guidance_scale
==
1.
:
e_t
=
self
.
model
.
apply_model
(
x
,
t
,
c
)
else
:
x_in
=
torch
.
cat
([
x
]
*
2
)
t_in
=
torch
.
cat
([
t
]
*
2
)
if
isinstance
(
c
,
dict
):
assert
isinstance
(
unconditional_conditioning
,
dict
)
c_in
=
dict
()
for
k
in
c
:
if
isinstance
(
c
[
k
],
list
):
c_in
[
k
]
=
[
torch
.
cat
([
unconditional_conditioning
[
k
][
i
],
c
[
k
][
i
]])
for
i
in
range
(
len
(
c
[
k
]))
]
else
:
c_in
[
k
]
=
torch
.
cat
([
unconditional_conditioning
[
k
],
c
[
k
]])
else
:
c_in
=
torch
.
cat
([
unconditional_conditioning
,
c
])
e_t_uncond
,
e_t
=
self
.
model
.
apply_model
(
x_in
,
t_in
,
c_in
)
.
chunk
(
2
)
e_t
=
e_t_uncond
+
unconditional_guidance_scale
*
(
e_t
-
e_t_uncond
)
if
score_corrector
is
not
None
:
assert
self
.
model
.
parameterization
==
"eps"
e_t
=
score_corrector
.
modify_score
(
self
.
model
,
e_t
,
x
,
t
,
c
,
**
corrector_kwargs
)
return
e_t
alphas
=
self
.
model
.
alphas_cumprod
if
use_original_steps
else
self
.
ddim_alphas
alphas_prev
=
self
.
model
.
alphas_cumprod_prev
if
use_original_steps
else
self
.
ddim_alphas_prev
sqrt_one_minus_alphas
=
self
.
model
.
sqrt_one_minus_alphas_cumprod
if
use_original_steps
else
self
.
ddim_sqrt_one_minus_alphas
sigmas
=
self
.
model
.
ddim_sigmas_for_original_num_steps
if
use_original_steps
else
self
.
ddim_sigmas
def
get_x_prev_and_pred_x0
(
e_t
,
index
):
# select parameters corresponding to the currently considered timestep
a_t
=
torch
.
full
((
b
,
1
,
1
,
1
),
alphas
[
index
],
device
=
device
)
a_prev
=
torch
.
full
((
b
,
1
,
1
,
1
),
alphas_prev
[
index
],
device
=
device
)
sigma_t
=
torch
.
full
((
b
,
1
,
1
,
1
),
sigmas
[
index
],
device
=
device
)
sqrt_one_minus_at
=
torch
.
full
((
b
,
1
,
1
,
1
),
sqrt_one_minus_alphas
[
index
],
device
=
device
)
# current prediction for x_0
pred_x0
=
(
x
-
sqrt_one_minus_at
*
e_t
)
/
a_t
.
sqrt
()
if
quantize_denoised
:
pred_x0
,
_
,
*
_
=
self
.
model
.
first_stage_model
.
quantize
(
pred_x0
)
# direction pointing to x_t
dir_xt
=
(
1.
-
a_prev
-
sigma_t
**
2
)
.
sqrt
()
*
e_t
noise
=
sigma_t
*
noise_like
(
x
.
shape
,
device
,
repeat_noise
)
*
temperature
if
noise_dropout
>
0.
:
noise
=
torch
.
nn
.
functional
.
dropout
(
noise
,
p
=
noise_dropout
)
x_prev
=
a_prev
.
sqrt
()
*
pred_x0
+
dir_xt
+
noise
return
x_prev
,
pred_x0
e_t
=
get_model_output
(
x
,
t
)
if
len
(
old_eps
)
==
0
:
# Pseudo Improved Euler (2nd order)
x_prev
,
pred_x0
=
get_x_prev_and_pred_x0
(
e_t
,
index
)
e_t_next
=
get_model_output
(
x_prev
,
t_next
)
e_t_prime
=
(
e_t
+
e_t_next
)
/
2
elif
len
(
old_eps
)
==
1
:
# 2nd order Pseudo Linear Multistep (Adams-Bashforth)
e_t_prime
=
(
3
*
e_t
-
old_eps
[
-
1
])
/
2
elif
len
(
old_eps
)
==
2
:
# 3nd order Pseudo Linear Multistep (Adams-Bashforth)
e_t_prime
=
(
23
*
e_t
-
16
*
old_eps
[
-
1
]
+
5
*
old_eps
[
-
2
])
/
12
elif
len
(
old_eps
)
>=
3
:
# 4nd order Pseudo Linear Multistep (Adams-Bashforth)
e_t_prime
=
(
55
*
e_t
-
59
*
old_eps
[
-
1
]
+
37
*
old_eps
[
-
2
]
-
9
*
old_eps
[
-
3
])
/
24
x_prev
,
pred_x0
=
get_x_prev_and_pred_x0
(
e_t_prime
,
index
)
return
x_prev
,
pred_x0
,
e_t
# =================================================================================================
# =================================================================================================
# Monkey patch LatentInpaintDiffusion to load the checkpoint with a proper config.
# Monkey patch LatentInpaintDiffusion to load the checkpoint with a proper config.
# Adapted from:
# Adapted from:
...
@@ -175,5 +320,9 @@ def should_hijack_inpainting(checkpoint_info):
...
@@ -175,5 +320,9 @@ def should_hijack_inpainting(checkpoint_info):
def
do_inpainting_hijack
():
def
do_inpainting_hijack
():
ldm
.
models
.
diffusion
.
ddpm
.
get_unconditional_conditioning
=
get_unconditional_conditioning
ldm
.
models
.
diffusion
.
ddpm
.
get_unconditional_conditioning
=
get_unconditional_conditioning
ldm
.
models
.
diffusion
.
ddpm
.
LatentInpaintDiffusion
=
LatentInpaintDiffusion
ldm
.
models
.
diffusion
.
ddpm
.
LatentInpaintDiffusion
=
LatentInpaintDiffusion
ldm
.
models
.
diffusion
.
ddim
.
DDIMSampler
.
p_sample_ddim
=
p_sample_ddim
ldm
.
models
.
diffusion
.
ddim
.
DDIMSampler
.
p_sample_ddim
=
p_sample_ddim
ldm
.
models
.
diffusion
.
ddim
.
DDIMSampler
.
sample
=
sample
ldm
.
models
.
diffusion
.
ddim
.
DDIMSampler
.
sample
=
sample_ddim
\ No newline at end of file
ldm
.
models
.
diffusion
.
plms
.
PLMSSampler
.
p_sample_plms
=
p_sample_plms
ldm
.
models
.
diffusion
.
plms
.
PLMSSampler
.
sample
=
sample_plms
\ No newline at end of file
modules/sd_models.py
View file @
708c3a7b
...
@@ -214,8 +214,6 @@ def load_model():
...
@@ -214,8 +214,6 @@ def load_model():
sd_config
=
OmegaConf
.
load
(
checkpoint_info
.
config
)
sd_config
=
OmegaConf
.
load
(
checkpoint_info
.
config
)
if
should_hijack_inpainting
(
checkpoint_info
):
if
should_hijack_inpainting
(
checkpoint_info
):
do_inpainting_hijack
()
# Hardcoded config for now...
# Hardcoded config for now...
sd_config
.
model
.
target
=
"ldm.models.diffusion.ddpm.LatentInpaintDiffusion"
sd_config
.
model
.
target
=
"ldm.models.diffusion.ddpm.LatentInpaintDiffusion"
sd_config
.
model
.
params
.
use_ema
=
False
sd_config
.
model
.
params
.
use_ema
=
False
...
@@ -225,6 +223,7 @@ def load_model():
...
@@ -225,6 +223,7 @@ def load_model():
# Create a "fake" config with a different name so that we know to unload it when switching models.
# Create a "fake" config with a different name so that we know to unload it when switching models.
checkpoint_info
=
checkpoint_info
.
_replace
(
config
=
checkpoint_info
.
config
.
replace
(
".yaml"
,
"-inpainting.yaml"
))
checkpoint_info
=
checkpoint_info
.
_replace
(
config
=
checkpoint_info
.
config
.
replace
(
".yaml"
,
"-inpainting.yaml"
))
do_inpainting_hijack
()
sd_model
=
instantiate_from_config
(
sd_config
.
model
)
sd_model
=
instantiate_from_config
(
sd_config
.
model
)
load_model_weights
(
sd_model
,
checkpoint_info
)
load_model_weights
(
sd_model
,
checkpoint_info
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment