Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Sign in / Register
Toggle navigation
S
Stable Diffusion Webui
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Locked Files
Issues
0
Issues
0
List
Boards
Labels
Service Desk
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Security & Compliance
Security & Compliance
Dependency List
License Compliance
Packages
Packages
List
Container Registry
Analytics
Analytics
CI / CD
Code Review
Insights
Issues
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
novelai-storage
Stable Diffusion Webui
Commits
47df0849
Commit
47df0849
authored
Jan 04, 2023
by
AUTOMATIC1111
Committed by
GitHub
Jan 04, 2023
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #6304 from vladmandic/add-cross-attention-info
add cross-attention info
parents
4d66bf2c
21ee77db
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
11 additions
and
1 deletion
+11
-1
modules/sd_hijack.py
modules/sd_hijack.py
+11
-1
No files found.
modules/sd_hijack.py
View file @
47df0849
...
@@ -35,26 +35,35 @@ def apply_optimizations():
...
@@ -35,26 +35,35 @@ def apply_optimizations():
ldm
.
modules
.
diffusionmodules
.
model
.
nonlinearity
=
silu
ldm
.
modules
.
diffusionmodules
.
model
.
nonlinearity
=
silu
ldm
.
modules
.
diffusionmodules
.
openaimodel
.
th
=
sd_hijack_unet
.
th
ldm
.
modules
.
diffusionmodules
.
openaimodel
.
th
=
sd_hijack_unet
.
th
optimization_method
=
None
if
cmd_opts
.
force_enable_xformers
or
(
cmd_opts
.
xformers
and
shared
.
xformers_available
and
torch
.
version
.
cuda
and
(
6
,
0
)
<=
torch
.
cuda
.
get_device_capability
(
shared
.
device
)
<=
(
9
,
0
)):
if
cmd_opts
.
force_enable_xformers
or
(
cmd_opts
.
xformers
and
shared
.
xformers_available
and
torch
.
version
.
cuda
and
(
6
,
0
)
<=
torch
.
cuda
.
get_device_capability
(
shared
.
device
)
<=
(
9
,
0
)):
print
(
"Applying xformers cross attention optimization."
)
print
(
"Applying xformers cross attention optimization."
)
ldm
.
modules
.
attention
.
CrossAttention
.
forward
=
sd_hijack_optimizations
.
xformers_attention_forward
ldm
.
modules
.
attention
.
CrossAttention
.
forward
=
sd_hijack_optimizations
.
xformers_attention_forward
ldm
.
modules
.
diffusionmodules
.
model
.
AttnBlock
.
forward
=
sd_hijack_optimizations
.
xformers_attnblock_forward
ldm
.
modules
.
diffusionmodules
.
model
.
AttnBlock
.
forward
=
sd_hijack_optimizations
.
xformers_attnblock_forward
optimization_method
=
'xformers'
elif
cmd_opts
.
opt_split_attention_v1
:
elif
cmd_opts
.
opt_split_attention_v1
:
print
(
"Applying v1 cross attention optimization."
)
print
(
"Applying v1 cross attention optimization."
)
ldm
.
modules
.
attention
.
CrossAttention
.
forward
=
sd_hijack_optimizations
.
split_cross_attention_forward_v1
ldm
.
modules
.
attention
.
CrossAttention
.
forward
=
sd_hijack_optimizations
.
split_cross_attention_forward_v1
optimization_method
=
'V1'
elif
not
cmd_opts
.
disable_opt_split_attention
and
(
cmd_opts
.
opt_split_attention_invokeai
or
not
torch
.
cuda
.
is_available
()):
elif
not
cmd_opts
.
disable_opt_split_attention
and
(
cmd_opts
.
opt_split_attention_invokeai
or
not
torch
.
cuda
.
is_available
()):
if
not
invokeAI_mps_available
and
shared
.
device
.
type
==
'mps'
:
if
not
invokeAI_mps_available
and
shared
.
device
.
type
==
'mps'
:
print
(
"The InvokeAI cross attention optimization for MPS requires the psutil package which is not installed."
)
print
(
"The InvokeAI cross attention optimization for MPS requires the psutil package which is not installed."
)
print
(
"Applying v1 cross attention optimization."
)
print
(
"Applying v1 cross attention optimization."
)
ldm
.
modules
.
attention
.
CrossAttention
.
forward
=
sd_hijack_optimizations
.
split_cross_attention_forward_v1
ldm
.
modules
.
attention
.
CrossAttention
.
forward
=
sd_hijack_optimizations
.
split_cross_attention_forward_v1
optimization_method
=
'V1'
else
:
else
:
print
(
"Applying cross attention optimization (InvokeAI)."
)
print
(
"Applying cross attention optimization (InvokeAI)."
)
ldm
.
modules
.
attention
.
CrossAttention
.
forward
=
sd_hijack_optimizations
.
split_cross_attention_forward_invokeAI
ldm
.
modules
.
attention
.
CrossAttention
.
forward
=
sd_hijack_optimizations
.
split_cross_attention_forward_invokeAI
optimization_method
=
'InvokeAI'
elif
not
cmd_opts
.
disable_opt_split_attention
and
(
cmd_opts
.
opt_split_attention
or
torch
.
cuda
.
is_available
()):
elif
not
cmd_opts
.
disable_opt_split_attention
and
(
cmd_opts
.
opt_split_attention
or
torch
.
cuda
.
is_available
()):
print
(
"Applying cross attention optimization (Doggettx)."
)
print
(
"Applying cross attention optimization (Doggettx)."
)
ldm
.
modules
.
attention
.
CrossAttention
.
forward
=
sd_hijack_optimizations
.
split_cross_attention_forward
ldm
.
modules
.
attention
.
CrossAttention
.
forward
=
sd_hijack_optimizations
.
split_cross_attention_forward
ldm
.
modules
.
diffusionmodules
.
model
.
AttnBlock
.
forward
=
sd_hijack_optimizations
.
cross_attention_attnblock_forward
ldm
.
modules
.
diffusionmodules
.
model
.
AttnBlock
.
forward
=
sd_hijack_optimizations
.
cross_attention_attnblock_forward
optimization_method
=
'Doggettx'
return
optimization_method
def
undo_optimizations
():
def
undo_optimizations
():
...
@@ -75,6 +84,7 @@ class StableDiffusionModelHijack:
...
@@ -75,6 +84,7 @@ class StableDiffusionModelHijack:
layers
=
None
layers
=
None
circular_enabled
=
False
circular_enabled
=
False
clip
=
None
clip
=
None
optimization_method
=
None
embedding_db
=
modules
.
textual_inversion
.
textual_inversion
.
EmbeddingDatabase
(
cmd_opts
.
embeddings_dir
)
embedding_db
=
modules
.
textual_inversion
.
textual_inversion
.
EmbeddingDatabase
(
cmd_opts
.
embeddings_dir
)
...
@@ -94,7 +104,7 @@ class StableDiffusionModelHijack:
...
@@ -94,7 +104,7 @@ class StableDiffusionModelHijack:
m
.
cond_stage_model
.
model
.
token_embedding
=
EmbeddingsWithFixes
(
m
.
cond_stage_model
.
model
.
token_embedding
,
self
)
m
.
cond_stage_model
.
model
.
token_embedding
=
EmbeddingsWithFixes
(
m
.
cond_stage_model
.
model
.
token_embedding
,
self
)
m
.
cond_stage_model
=
sd_hijack_open_clip
.
FrozenOpenCLIPEmbedderWithCustomWords
(
m
.
cond_stage_model
,
self
)
m
.
cond_stage_model
=
sd_hijack_open_clip
.
FrozenOpenCLIPEmbedderWithCustomWords
(
m
.
cond_stage_model
,
self
)
apply_optimizations
()
self
.
optimization_method
=
apply_optimizations
()
self
.
clip
=
m
.
cond_stage_model
self
.
clip
=
m
.
cond_stage_model
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment