Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Sign in / Register
Toggle navigation
S
Stable Diffusion Webui
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Locked Files
Issues
0
Issues
0
List
Boards
Labels
Service Desk
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Security & Compliance
Security & Compliance
Dependency List
License Compliance
Packages
Packages
List
Container Registry
Analytics
Analytics
CI / CD
Code Review
Insights
Issues
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
novelai-storage
Stable Diffusion Webui
Commits
40a18d38
Commit
40a18d38
authored
Jul 18, 2023
by
lambertae
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
add restart sampler
parent
394ffa7b
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
68 additions
and
2 deletions
+68
-2
modules/sd_samplers_kdiffusion.py
modules/sd_samplers_kdiffusion.py
+68
-2
No files found.
modules/sd_samplers_kdiffusion.py
View file @
40a18d38
# export PIP_CACHE_DIR=/scratch/dengm/cache
# export XDG_CACHE_HOME=/scratch/dengm/cache
from
collections
import
deque
from
collections
import
deque
import
torch
import
torch
import
inspect
import
inspect
...
@@ -30,12 +32,76 @@ samplers_k_diffusion = [
...
@@ -30,12 +32,76 @@ samplers_k_diffusion = [
(
'DPM++ 2M Karras'
,
'sample_dpmpp_2m'
,
[
'k_dpmpp_2m_ka'
],
{
'scheduler'
:
'karras'
}),
(
'DPM++ 2M Karras'
,
'sample_dpmpp_2m'
,
[
'k_dpmpp_2m_ka'
],
{
'scheduler'
:
'karras'
}),
(
'DPM++ SDE Karras'
,
'sample_dpmpp_sde'
,
[
'k_dpmpp_sde_ka'
],
{
'scheduler'
:
'karras'
,
"second_order"
:
True
,
"brownian_noise"
:
True
}),
(
'DPM++ SDE Karras'
,
'sample_dpmpp_sde'
,
[
'k_dpmpp_sde_ka'
],
{
'scheduler'
:
'karras'
,
"second_order"
:
True
,
"brownian_noise"
:
True
}),
(
'DPM++ 2M SDE Karras'
,
'sample_dpmpp_2m_sde'
,
[
'k_dpmpp_2m_sde_ka'
],
{
'scheduler'
:
'karras'
,
"brownian_noise"
:
True
}),
(
'DPM++ 2M SDE Karras'
,
'sample_dpmpp_2m_sde'
,
[
'k_dpmpp_2m_sde_ka'
],
{
'scheduler'
:
'karras'
,
"brownian_noise"
:
True
}),
(
'Restart (new)'
,
'restart_sampler'
,
[
'restart'
],
{
'scheduler'
:
'karras'
,
"second_order"
:
True
}),
]
]
@
torch
.
no_grad
()
def
restart_sampler
(
model
,
x
,
sigmas
,
extra_args
=
None
,
callback
=
None
,
disable
=
None
,
s_noise
=
1.
,
restart_list
=
{
0.1
:
[
10
,
2
,
2
]}):
"""Implements restart sampling in Restart Sampling for Improving Generative Processes (2023)"""
'''Restart_list format: {min_sigma: [ restart_steps, restart_times, max_sigma]}'''
from
tqdm.auto
import
trange
,
tqdm
extra_args
=
{}
if
extra_args
is
None
else
extra_args
s_in
=
x
.
new_ones
([
x
.
shape
[
0
]])
step_id
=
0
from
k_diffusion.sampling
import
to_d
,
append_zero
def
heun_step
(
x
,
old_sigma
,
new_sigma
):
nonlocal
step_id
denoised
=
model
(
x
,
old_sigma
*
s_in
,
**
extra_args
)
d
=
to_d
(
x
,
old_sigma
,
denoised
)
if
callback
is
not
None
:
callback
({
'x'
:
x
,
'i'
:
step_id
,
'sigma'
:
new_sigma
,
'sigma_hat'
:
old_sigma
,
'denoised'
:
denoised
})
dt
=
new_sigma
-
old_sigma
if
new_sigma
==
0
:
# Euler method
x
=
x
+
d
*
dt
else
:
# Heun's method
x_2
=
x
+
d
*
dt
denoised_2
=
model
(
x_2
,
new_sigma
*
s_in
,
**
extra_args
)
d_2
=
to_d
(
x_2
,
new_sigma
,
denoised_2
)
d_prime
=
(
d
+
d_2
)
/
2
x
=
x
+
d_prime
*
dt
step_id
+=
1
return
x
# print(sigmas)
temp_list
=
dict
()
for
key
,
value
in
restart_list
.
items
():
temp_list
[
int
(
torch
.
argmin
(
abs
(
sigmas
-
key
),
dim
=
0
))]
=
value
restart_list
=
temp_list
def
get_sigmas_karras
(
n
,
sigma_min
,
sigma_max
,
rho
=
7.
,
device
=
'cpu'
):
ramp
=
torch
.
linspace
(
0
,
1
,
n
)
.
to
(
device
)
min_inv_rho
=
(
sigma_min
**
(
1
/
rho
))
max_inv_rho
=
(
sigma_max
**
(
1
/
rho
))
if
isinstance
(
min_inv_rho
,
torch
.
Tensor
):
min_inv_rho
=
min_inv_rho
.
to
(
device
)
if
isinstance
(
max_inv_rho
,
torch
.
Tensor
):
max_inv_rho
=
max_inv_rho
.
to
(
device
)
sigmas
=
(
max_inv_rho
+
ramp
*
(
min_inv_rho
-
max_inv_rho
))
**
rho
return
append_zero
(
sigmas
)
.
to
(
device
)
for
i
in
trange
(
len
(
sigmas
)
-
1
,
disable
=
disable
):
x
=
heun_step
(
x
,
sigmas
[
i
],
sigmas
[
i
+
1
])
if
i
+
1
in
restart_list
:
restart_steps
,
restart_times
,
restart_max
=
restart_list
[
i
+
1
]
min_idx
=
i
+
1
max_idx
=
int
(
torch
.
argmin
(
abs
(
sigmas
-
restart_max
),
dim
=
0
))
sigma_restart
=
get_sigmas_karras
(
restart_steps
,
sigmas
[
min_idx
],
sigmas
[
max_idx
],
device
=
sigmas
.
device
)[:
-
1
]
# remove the zero at the end
for
times
in
range
(
restart_times
):
x
=
x
+
torch
.
randn_like
(
x
)
*
s_noise
*
(
sigmas
[
max_idx
]
**
2
-
sigmas
[
min_idx
]
**
2
)
**
0.5
for
(
old_sigma
,
new_sigma
)
in
zip
(
sigma_restart
[:
-
1
],
sigma_restart
[
1
:]):
x
=
heun_step
(
x
,
old_sigma
,
new_sigma
)
return
x
samplers_data_k_diffusion
=
[
samplers_data_k_diffusion
=
[
sd_samplers_common
.
SamplerData
(
label
,
lambda
model
,
funcname
=
funcname
:
KDiffusionSampler
(
funcname
,
model
),
aliases
,
options
)
sd_samplers_common
.
SamplerData
(
label
,
lambda
model
,
funcname
=
funcname
:
KDiffusionSampler
(
funcname
,
model
),
aliases
,
options
)
for
label
,
funcname
,
aliases
,
options
in
samplers_k_diffusion
for
label
,
funcname
,
aliases
,
options
in
samplers_k_diffusion
if
hasattr
(
k_diffusion
.
sampling
,
funcname
)
if
(
hasattr
(
k_diffusion
.
sampling
,
funcname
)
or
funcname
==
'restart_sampler'
)
]
]
sampler_extra_params
=
{
sampler_extra_params
=
{
...
@@ -245,7 +311,7 @@ class KDiffusionSampler:
...
@@ -245,7 +311,7 @@ class KDiffusionSampler:
self
.
model_wrap
=
denoiser
(
sd_model
,
quantize
=
shared
.
opts
.
enable_quantization
)
self
.
model_wrap
=
denoiser
(
sd_model
,
quantize
=
shared
.
opts
.
enable_quantization
)
self
.
funcname
=
funcname
self
.
funcname
=
funcname
self
.
func
=
getattr
(
k_diffusion
.
sampling
,
self
.
funcname
)
self
.
func
=
getattr
(
k_diffusion
.
sampling
,
self
.
funcname
)
if
funcname
!=
"restart_sampler"
else
restart_sampler
self
.
extra_params
=
sampler_extra_params
.
get
(
funcname
,
[])
self
.
extra_params
=
sampler_extra_params
.
get
(
funcname
,
[])
self
.
model_wrap_cfg
=
CFGDenoiser
(
self
.
model_wrap
)
self
.
model_wrap_cfg
=
CFGDenoiser
(
self
.
model_wrap
)
self
.
sampler_noises
=
None
self
.
sampler_noises
=
None
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment