Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Sign in / Register
Toggle navigation
S
Stable Diffusion Webui
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Locked Files
Issues
0
Issues
0
List
Boards
Labels
Service Desk
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Security & Compliance
Security & Compliance
Dependency List
License Compliance
Packages
Packages
List
Container Registry
Analytics
Analytics
CI / CD
Code Review
Insights
Issues
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
novelai-storage
Stable Diffusion Webui
Commits
30228c67
Commit
30228c67
authored
Feb 04, 2023
by
AUTOMATIC1111
Committed by
GitHub
Feb 04, 2023
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #7461 from brkirch/mac-fixes
Move Mac related code to separate file
parents
c4b9ed1a
4306659c
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
60 additions
and
61 deletions
+60
-61
modules/devices.py
modules/devices.py
+7
-45
modules/mac_specific.py
modules/mac_specific.py
+53
-0
modules/sd_samplers_common.py
modules/sd_samplers_common.py
+0
-16
No files found.
modules/devices.py
View file @
30228c67
import
sys
,
os
,
shlex
import
sys
import
contextlib
import
contextlib
import
torch
import
torch
from
modules
import
errors
from
modules
import
errors
from
modules.sd_hijack_utils
import
CondFunc
from
packaging
import
version
if
sys
.
platform
==
"darwin"
:
from
modules
import
mac_specific
# has_mps is only available in nightly pytorch (for now) and macOS 12.3+.
# check `getattr` and try it for compatibility
def
has_mps
()
->
bool
:
def
has_mps
()
->
bool
:
if
not
getattr
(
torch
,
'has_mps'
,
False
):
if
sys
.
platform
!=
"darwin"
:
return
False
try
:
torch
.
zeros
(
1
)
.
to
(
torch
.
device
(
"mps"
))
return
True
except
Exception
:
return
False
return
False
else
:
return
mac_specific
.
has_mps
def
extract_device_id
(
args
,
name
):
def
extract_device_id
(
args
,
name
):
for
x
in
range
(
len
(
args
)):
for
x
in
range
(
len
(
args
)):
...
@@ -155,36 +150,3 @@ def test_for_nans(x, where):
...
@@ -155,36 +150,3 @@ def test_for_nans(x, where):
message
+=
" Use --disable-nan-check commandline argument to disable this check."
message
+=
" Use --disable-nan-check commandline argument to disable this check."
raise
NansException
(
message
)
raise
NansException
(
message
)
# MPS workaround for https://github.com/pytorch/pytorch/issues/89784
def
cumsum_fix
(
input
,
cumsum_func
,
*
args
,
**
kwargs
):
if
input
.
device
.
type
==
'mps'
:
output_dtype
=
kwargs
.
get
(
'dtype'
,
input
.
dtype
)
if
output_dtype
==
torch
.
int64
:
return
cumsum_func
(
input
.
cpu
(),
*
args
,
**
kwargs
)
.
to
(
input
.
device
)
elif
cumsum_needs_bool_fix
and
output_dtype
==
torch
.
bool
or
cumsum_needs_int_fix
and
(
output_dtype
==
torch
.
int8
or
output_dtype
==
torch
.
int16
):
return
cumsum_func
(
input
.
to
(
torch
.
int32
),
*
args
,
**
kwargs
)
.
to
(
torch
.
int64
)
return
cumsum_func
(
input
,
*
args
,
**
kwargs
)
if
has_mps
():
if
version
.
parse
(
torch
.
__version__
)
<
version
.
parse
(
"1.13"
):
# PyTorch 1.13 doesn't need these fixes but unfortunately is slower and has regressions that prevent training from working
# MPS workaround for https://github.com/pytorch/pytorch/issues/79383
CondFunc
(
'torch.Tensor.to'
,
lambda
orig_func
,
self
,
*
args
,
**
kwargs
:
orig_func
(
self
.
contiguous
(),
*
args
,
**
kwargs
),
lambda
_
,
self
,
*
args
,
**
kwargs
:
self
.
device
.
type
!=
'mps'
and
(
args
and
isinstance
(
args
[
0
],
torch
.
device
)
and
args
[
0
]
.
type
==
'mps'
or
isinstance
(
kwargs
.
get
(
'device'
),
torch
.
device
)
and
kwargs
[
'device'
]
.
type
==
'mps'
))
# MPS workaround for https://github.com/pytorch/pytorch/issues/80800
CondFunc
(
'torch.nn.functional.layer_norm'
,
lambda
orig_func
,
*
args
,
**
kwargs
:
orig_func
(
*
([
args
[
0
]
.
contiguous
()]
+
list
(
args
[
1
:])),
**
kwargs
),
lambda
_
,
*
args
,
**
kwargs
:
args
and
isinstance
(
args
[
0
],
torch
.
Tensor
)
and
args
[
0
]
.
device
.
type
==
'mps'
)
# MPS workaround for https://github.com/pytorch/pytorch/issues/90532
CondFunc
(
'torch.Tensor.numpy'
,
lambda
orig_func
,
self
,
*
args
,
**
kwargs
:
orig_func
(
self
.
detach
(),
*
args
,
**
kwargs
),
lambda
_
,
self
,
*
args
,
**
kwargs
:
self
.
requires_grad
)
elif
version
.
parse
(
torch
.
__version__
)
>
version
.
parse
(
"1.13.1"
):
cumsum_needs_int_fix
=
not
torch
.
Tensor
([
1
,
2
])
.
to
(
torch
.
device
(
"mps"
))
.
equal
(
torch
.
ShortTensor
([
1
,
1
])
.
to
(
torch
.
device
(
"mps"
))
.
cumsum
(
0
))
cumsum_needs_bool_fix
=
not
torch
.
BoolTensor
([
True
,
True
])
.
to
(
device
=
torch
.
device
(
"mps"
),
dtype
=
torch
.
int64
)
.
equal
(
torch
.
BoolTensor
([
True
,
False
])
.
to
(
torch
.
device
(
"mps"
))
.
cumsum
(
0
))
cumsum_fix_func
=
lambda
orig_func
,
input
,
*
args
,
**
kwargs
:
cumsum_fix
(
input
,
orig_func
,
*
args
,
**
kwargs
)
CondFunc
(
'torch.cumsum'
,
cumsum_fix_func
,
None
)
CondFunc
(
'torch.Tensor.cumsum'
,
cumsum_fix_func
,
None
)
CondFunc
(
'torch.narrow'
,
lambda
orig_func
,
*
args
,
**
kwargs
:
orig_func
(
*
args
,
**
kwargs
)
.
clone
(),
None
)
modules/mac_specific.py
0 → 100644
View file @
30228c67
import
torch
from
modules
import
paths
from
modules.sd_hijack_utils
import
CondFunc
from
packaging
import
version
# has_mps is only available in nightly pytorch (for now) and macOS 12.3+.
# check `getattr` and try it for compatibility
def
check_for_mps
()
->
bool
:
if
not
getattr
(
torch
,
'has_mps'
,
False
):
return
False
try
:
torch
.
zeros
(
1
)
.
to
(
torch
.
device
(
"mps"
))
return
True
except
Exception
:
return
False
has_mps
=
check_for_mps
()
# MPS workaround for https://github.com/pytorch/pytorch/issues/89784
def
cumsum_fix
(
input
,
cumsum_func
,
*
args
,
**
kwargs
):
if
input
.
device
.
type
==
'mps'
:
output_dtype
=
kwargs
.
get
(
'dtype'
,
input
.
dtype
)
if
output_dtype
==
torch
.
int64
:
return
cumsum_func
(
input
.
cpu
(),
*
args
,
**
kwargs
)
.
to
(
input
.
device
)
elif
cumsum_needs_bool_fix
and
output_dtype
==
torch
.
bool
or
cumsum_needs_int_fix
and
(
output_dtype
==
torch
.
int8
or
output_dtype
==
torch
.
int16
):
return
cumsum_func
(
input
.
to
(
torch
.
int32
),
*
args
,
**
kwargs
)
.
to
(
torch
.
int64
)
return
cumsum_func
(
input
,
*
args
,
**
kwargs
)
if
has_mps
:
# MPS fix for randn in torchsde
CondFunc
(
'torchsde._brownian.brownian_interval._randn'
,
lambda
_
,
size
,
dtype
,
device
,
seed
:
torch
.
randn
(
size
,
dtype
=
dtype
,
device
=
torch
.
device
(
"cpu"
),
generator
=
torch
.
Generator
(
torch
.
device
(
"cpu"
))
.
manual_seed
(
int
(
seed
)))
.
to
(
device
),
lambda
_
,
size
,
dtype
,
device
,
seed
:
device
.
type
==
'mps'
)
if
version
.
parse
(
torch
.
__version__
)
<
version
.
parse
(
"1.13"
):
# PyTorch 1.13 doesn't need these fixes but unfortunately is slower and has regressions that prevent training from working
# MPS workaround for https://github.com/pytorch/pytorch/issues/79383
CondFunc
(
'torch.Tensor.to'
,
lambda
orig_func
,
self
,
*
args
,
**
kwargs
:
orig_func
(
self
.
contiguous
(),
*
args
,
**
kwargs
),
lambda
_
,
self
,
*
args
,
**
kwargs
:
self
.
device
.
type
!=
'mps'
and
(
args
and
isinstance
(
args
[
0
],
torch
.
device
)
and
args
[
0
]
.
type
==
'mps'
or
isinstance
(
kwargs
.
get
(
'device'
),
torch
.
device
)
and
kwargs
[
'device'
]
.
type
==
'mps'
))
# MPS workaround for https://github.com/pytorch/pytorch/issues/80800
CondFunc
(
'torch.nn.functional.layer_norm'
,
lambda
orig_func
,
*
args
,
**
kwargs
:
orig_func
(
*
([
args
[
0
]
.
contiguous
()]
+
list
(
args
[
1
:])),
**
kwargs
),
lambda
_
,
*
args
,
**
kwargs
:
args
and
isinstance
(
args
[
0
],
torch
.
Tensor
)
and
args
[
0
]
.
device
.
type
==
'mps'
)
# MPS workaround for https://github.com/pytorch/pytorch/issues/90532
CondFunc
(
'torch.Tensor.numpy'
,
lambda
orig_func
,
self
,
*
args
,
**
kwargs
:
orig_func
(
self
.
detach
(),
*
args
,
**
kwargs
),
lambda
_
,
self
,
*
args
,
**
kwargs
:
self
.
requires_grad
)
elif
version
.
parse
(
torch
.
__version__
)
>
version
.
parse
(
"1.13.1"
):
cumsum_needs_int_fix
=
not
torch
.
Tensor
([
1
,
2
])
.
to
(
torch
.
device
(
"mps"
))
.
equal
(
torch
.
ShortTensor
([
1
,
1
])
.
to
(
torch
.
device
(
"mps"
))
.
cumsum
(
0
))
cumsum_needs_bool_fix
=
not
torch
.
BoolTensor
([
True
,
True
])
.
to
(
device
=
torch
.
device
(
"mps"
),
dtype
=
torch
.
int64
)
.
equal
(
torch
.
BoolTensor
([
True
,
False
])
.
to
(
torch
.
device
(
"mps"
))
.
cumsum
(
0
))
cumsum_fix_func
=
lambda
orig_func
,
input
,
*
args
,
**
kwargs
:
cumsum_fix
(
input
,
orig_func
,
*
args
,
**
kwargs
)
CondFunc
(
'torch.cumsum'
,
cumsum_fix_func
,
None
)
CondFunc
(
'torch.Tensor.cumsum'
,
cumsum_fix_func
,
None
)
CondFunc
(
'torch.narrow'
,
lambda
orig_func
,
*
args
,
**
kwargs
:
orig_func
(
*
args
,
**
kwargs
)
.
clone
(),
None
)
modules/sd_samplers_common.py
View file @
30228c67
...
@@ -2,7 +2,6 @@ from collections import namedtuple
...
@@ -2,7 +2,6 @@ from collections import namedtuple
import
numpy
as
np
import
numpy
as
np
import
torch
import
torch
from
PIL
import
Image
from
PIL
import
Image
import
torchsde._brownian.brownian_interval
from
modules
import
devices
,
processing
,
images
,
sd_vae_approx
from
modules
import
devices
,
processing
,
images
,
sd_vae_approx
from
modules.shared
import
opts
,
state
from
modules.shared
import
opts
,
state
...
@@ -61,18 +60,3 @@ def store_latent(decoded):
...
@@ -61,18 +60,3 @@ def store_latent(decoded):
class
InterruptedException
(
BaseException
):
class
InterruptedException
(
BaseException
):
pass
pass
# MPS fix for randn in torchsde
# XXX move this to separate file for MPS
def
torchsde_randn
(
size
,
dtype
,
device
,
seed
):
if
device
.
type
==
'mps'
:
generator
=
torch
.
Generator
(
devices
.
cpu
)
.
manual_seed
(
int
(
seed
))
return
torch
.
randn
(
size
,
dtype
=
dtype
,
device
=
devices
.
cpu
,
generator
=
generator
)
.
to
(
device
)
else
:
generator
=
torch
.
Generator
(
device
)
.
manual_seed
(
int
(
seed
))
return
torch
.
randn
(
size
,
dtype
=
dtype
,
device
=
device
,
generator
=
generator
)
torchsde
.
_brownian
.
brownian_interval
.
_randn
=
torchsde_randn
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment