Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Sign in / Register
Toggle navigation
S
Stable Diffusion Webui
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Locked Files
Issues
0
Issues
0
List
Boards
Labels
Service Desk
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Security & Compliance
Security & Compliance
Dependency List
License Compliance
Packages
Packages
List
Container Registry
Analytics
Analytics
CI / CD
Code Review
Insights
Issues
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
novelai-storage
Stable Diffusion Webui
Commits
2207ef36
Commit
2207ef36
authored
Nov 19, 2023
by
AUTOMATIC1111
Committed by
GitHub
Nov 19, 2023
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #13692 from v0xie/network-oft
Support inference with OFT networks
parents
3a13b0e7
eb667e71
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
157 additions
and
0 deletions
+157
-0
extensions-builtin/Lora/lyco_helpers.py
extensions-builtin/Lora/lyco_helpers.py
+47
-0
extensions-builtin/Lora/network_oft.py
extensions-builtin/Lora/network_oft.py
+97
-0
extensions-builtin/Lora/networks.py
extensions-builtin/Lora/networks.py
+13
-0
No files found.
extensions-builtin/Lora/lyco_helpers.py
View file @
2207ef36
...
...
@@ -19,3 +19,50 @@ def rebuild_cp_decomposition(up, down, mid):
up
=
up
.
reshape
(
up
.
size
(
0
),
-
1
)
down
=
down
.
reshape
(
down
.
size
(
0
),
-
1
)
return
torch
.
einsum
(
'n m k l, i n, m j -> i j k l'
,
mid
,
up
,
down
)
# copied from https://github.com/KohakuBlueleaf/LyCORIS/blob/dev/lycoris/modules/lokr.py
def
factorization
(
dimension
:
int
,
factor
:
int
=-
1
)
->
tuple
[
int
,
int
]:
'''
return a tuple of two value of input dimension decomposed by the number closest to factor
second value is higher or equal than first value.
In LoRA with Kroneckor Product, first value is a value for weight scale.
secon value is a value for weight.
Becuase of non-commutative property, A⊗B ≠ B⊗A. Meaning of two matrices is slightly different.
examples)
factor
-1 2 4 8 16 ...
127 -> 1, 127 127 -> 1, 127 127 -> 1, 127 127 -> 1, 127 127 -> 1, 127
128 -> 8, 16 128 -> 2, 64 128 -> 4, 32 128 -> 8, 16 128 -> 8, 16
250 -> 10, 25 250 -> 2, 125 250 -> 2, 125 250 -> 5, 50 250 -> 10, 25
360 -> 8, 45 360 -> 2, 180 360 -> 4, 90 360 -> 8, 45 360 -> 12, 30
512 -> 16, 32 512 -> 2, 256 512 -> 4, 128 512 -> 8, 64 512 -> 16, 32
1024 -> 32, 32 1024 -> 2, 512 1024 -> 4, 256 1024 -> 8, 128 1024 -> 16, 64
'''
if
factor
>
0
and
(
dimension
%
factor
)
==
0
:
m
=
factor
n
=
dimension
//
factor
if
m
>
n
:
n
,
m
=
m
,
n
return
m
,
n
if
factor
<
0
:
factor
=
dimension
m
,
n
=
1
,
dimension
length
=
m
+
n
while
m
<
n
:
new_m
=
m
+
1
while
dimension
%
new_m
!=
0
:
new_m
+=
1
new_n
=
dimension
//
new_m
if
new_m
+
new_n
>
length
or
new_m
>
factor
:
break
else
:
m
,
n
=
new_m
,
new_n
if
m
>
n
:
n
,
m
=
m
,
n
return
m
,
n
extensions-builtin/Lora/network_oft.py
0 → 100644
View file @
2207ef36
import
torch
import
network
from
lyco_helpers
import
factorization
from
einops
import
rearrange
class
ModuleTypeOFT
(
network
.
ModuleType
):
def
create_module
(
self
,
net
:
network
.
Network
,
weights
:
network
.
NetworkWeights
):
if
all
(
x
in
weights
.
w
for
x
in
[
"oft_blocks"
])
or
all
(
x
in
weights
.
w
for
x
in
[
"oft_diag"
]):
return
NetworkModuleOFT
(
net
,
weights
)
return
None
# Supports both kohya-ss' implementation of COFT https://github.com/kohya-ss/sd-scripts/blob/main/networks/oft.py
# and KohakuBlueleaf's implementation of OFT/COFT https://github.com/KohakuBlueleaf/LyCORIS/blob/dev/lycoris/modules/diag_oft.py
class
NetworkModuleOFT
(
network
.
NetworkModule
):
def
__init__
(
self
,
net
:
network
.
Network
,
weights
:
network
.
NetworkWeights
):
super
()
.
__init__
(
net
,
weights
)
self
.
lin_module
=
None
self
.
org_module
:
list
[
torch
.
Module
]
=
[
self
.
sd_module
]
# kohya-ss
if
"oft_blocks"
in
weights
.
w
.
keys
():
self
.
is_kohya
=
True
self
.
oft_blocks
=
weights
.
w
[
"oft_blocks"
]
# (num_blocks, block_size, block_size)
self
.
alpha
=
weights
.
w
[
"alpha"
]
# alpha is constraint
self
.
dim
=
self
.
oft_blocks
.
shape
[
0
]
# lora dim
# LyCORIS
elif
"oft_diag"
in
weights
.
w
.
keys
():
self
.
is_kohya
=
False
self
.
oft_blocks
=
weights
.
w
[
"oft_diag"
]
# self.alpha is unused
self
.
dim
=
self
.
oft_blocks
.
shape
[
1
]
# (num_blocks, block_size, block_size)
is_linear
=
type
(
self
.
sd_module
)
in
[
torch
.
nn
.
Linear
,
torch
.
nn
.
modules
.
linear
.
NonDynamicallyQuantizableLinear
]
is_conv
=
type
(
self
.
sd_module
)
in
[
torch
.
nn
.
Conv2d
]
is_other_linear
=
type
(
self
.
sd_module
)
in
[
torch
.
nn
.
MultiheadAttention
]
# unsupported
if
is_linear
:
self
.
out_dim
=
self
.
sd_module
.
out_features
elif
is_conv
:
self
.
out_dim
=
self
.
sd_module
.
out_channels
elif
is_other_linear
:
self
.
out_dim
=
self
.
sd_module
.
embed_dim
if
self
.
is_kohya
:
self
.
constraint
=
self
.
alpha
*
self
.
out_dim
self
.
num_blocks
=
self
.
dim
self
.
block_size
=
self
.
out_dim
//
self
.
dim
else
:
self
.
constraint
=
None
self
.
block_size
,
self
.
num_blocks
=
factorization
(
self
.
out_dim
,
self
.
dim
)
def
calc_updown_kb
(
self
,
orig_weight
,
multiplier
):
oft_blocks
=
self
.
oft_blocks
.
to
(
orig_weight
.
device
,
dtype
=
orig_weight
.
dtype
)
oft_blocks
=
oft_blocks
-
oft_blocks
.
transpose
(
1
,
2
)
# ensure skew-symmetric orthogonal matrix
R
=
oft_blocks
.
to
(
orig_weight
.
device
,
dtype
=
orig_weight
.
dtype
)
R
=
R
*
multiplier
+
torch
.
eye
(
self
.
block_size
,
device
=
orig_weight
.
device
)
# This errors out for MultiheadAttention, might need to be handled up-stream
merged_weight
=
rearrange
(
orig_weight
,
'(k n) ... -> k n ...'
,
k
=
self
.
num_blocks
,
n
=
self
.
block_size
)
merged_weight
=
torch
.
einsum
(
'k n m, k n ... -> k m ...'
,
R
,
merged_weight
)
merged_weight
=
rearrange
(
merged_weight
,
'k m ... -> (k m) ...'
)
updown
=
merged_weight
.
to
(
orig_weight
.
device
,
dtype
=
orig_weight
.
dtype
)
-
orig_weight
output_shape
=
orig_weight
.
shape
return
self
.
finalize_updown
(
updown
,
orig_weight
,
output_shape
)
def
calc_updown
(
self
,
orig_weight
):
# if alpha is a very small number as in coft, calc_scale() will return a almost zero number so we ignore it
multiplier
=
self
.
multiplier
()
return
self
.
calc_updown_kb
(
orig_weight
,
multiplier
)
# override to remove the multiplier/scale factor; it's already multiplied in get_weight
def
finalize_updown
(
self
,
updown
,
orig_weight
,
output_shape
,
ex_bias
=
None
):
if
self
.
bias
is
not
None
:
updown
=
updown
.
reshape
(
self
.
bias
.
shape
)
updown
+=
self
.
bias
.
to
(
orig_weight
.
device
,
dtype
=
orig_weight
.
dtype
)
updown
=
updown
.
reshape
(
output_shape
)
if
len
(
output_shape
)
==
4
:
updown
=
updown
.
reshape
(
output_shape
)
if
orig_weight
.
size
()
.
numel
()
==
updown
.
size
()
.
numel
():
updown
=
updown
.
reshape
(
orig_weight
.
shape
)
if
ex_bias
is
not
None
:
ex_bias
=
ex_bias
*
self
.
multiplier
()
return
updown
,
ex_bias
extensions-builtin/Lora/networks.py
View file @
2207ef36
...
...
@@ -11,6 +11,7 @@ import network_ia3
import
network_lokr
import
network_full
import
network_norm
import
network_oft
import
torch
from
typing
import
Union
...
...
@@ -28,6 +29,7 @@ module_types = [
network_full
.
ModuleTypeFull
(),
network_norm
.
ModuleTypeNorm
(),
network_glora
.
ModuleTypeGLora
(),
network_oft
.
ModuleTypeOFT
(),
]
...
...
@@ -189,6 +191,17 @@ def load_network(name, network_on_disk):
key
=
key_network_without_network_parts
.
replace
(
"lora_te1_text_model"
,
"transformer_text_model"
)
sd_module
=
shared
.
sd_model
.
network_layer_mapping
.
get
(
key
,
None
)
# kohya_ss OFT module
elif
sd_module
is
None
and
"oft_unet"
in
key_network_without_network_parts
:
key
=
key_network_without_network_parts
.
replace
(
"oft_unet"
,
"diffusion_model"
)
sd_module
=
shared
.
sd_model
.
network_layer_mapping
.
get
(
key
,
None
)
# KohakuBlueLeaf OFT module
if
sd_module
is
None
and
"oft_diag"
in
key
:
key
=
key_network_without_network_parts
.
replace
(
"lora_unet"
,
"diffusion_model"
)
key
=
key_network_without_network_parts
.
replace
(
"lora_te1_text_model"
,
"0_transformer_text_model"
)
sd_module
=
shared
.
sd_model
.
network_layer_mapping
.
get
(
key
,
None
)
if
sd_module
is
None
:
keys_failed_to_match
[
key_network
]
=
key
continue
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment