Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Sign in / Register
Toggle navigation
S
Stable Diffusion Webui
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Locked Files
Issues
0
Issues
0
List
Boards
Labels
Service Desk
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Security & Compliance
Security & Compliance
Dependency List
License Compliance
Packages
Packages
List
Container Registry
Analytics
Analytics
CI / CD
Code Review
Insights
Issues
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
novelai-storage
Stable Diffusion Webui
Commits
1d0bb397
Commit
1d0bb397
authored
Jun 09, 2024
by
AUTOMATIC1111
Committed by
GitHub
Jun 09, 2024
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #15823 from drhead/patch-3
[Performance] Keep sigmas on CPU
parents
57e6d05a
d52a1e1a
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
16 additions
and
10 deletions
+16
-10
modules/sd_samplers_kdiffusion.py
modules/sd_samplers_kdiffusion.py
+1
-1
modules/sd_schedulers.py
modules/sd_schedulers.py
+15
-9
No files found.
modules/sd_samplers_kdiffusion.py
View file @
1d0bb397
...
...
@@ -115,7 +115,7 @@ class KDiffusionSampler(sd_samplers_common.Sampler):
if
scheduler
.
need_inner_model
:
sigmas_kwargs
[
'inner_model'
]
=
self
.
model_wrap
sigmas
=
scheduler
.
function
(
n
=
steps
,
**
sigmas_kwargs
,
device
=
shared
.
device
)
sigmas
=
scheduler
.
function
(
n
=
steps
,
**
sigmas_kwargs
)
if
discard_next_to_last_sigma
:
sigmas
=
torch
.
cat
([
sigmas
[:
-
2
],
sigmas
[
-
1
:]])
...
...
modules/sd_schedulers.py
View file @
1d0bb397
...
...
@@ -8,6 +8,12 @@ import numpy as np
from
modules
import
shared
def
to_d
(
x
,
sigma
,
denoised
):
"""Converts a denoiser output to a Karras ODE derivative."""
return
(
x
-
denoised
)
/
sigma
k_diffusion
.
sampling
.
to_d
=
to_d
@
dataclasses
.
dataclass
class
Scheduler
:
name
:
str
...
...
@@ -19,11 +25,11 @@ class Scheduler:
aliases
:
list
=
None
def
uniform
(
n
,
sigma_min
,
sigma_max
,
inner_model
,
device
):
def
uniform
(
n
,
sigma_min
,
sigma_max
,
inner_model
):
return
inner_model
.
get_sigmas
(
n
)
def
sgm_uniform
(
n
,
sigma_min
,
sigma_max
,
inner_model
,
device
):
def
sgm_uniform
(
n
,
sigma_min
,
sigma_max
,
inner_model
):
start
=
inner_model
.
sigma_to_t
(
torch
.
tensor
(
sigma_max
))
end
=
inner_model
.
sigma_to_t
(
torch
.
tensor
(
sigma_min
))
sigs
=
[
...
...
@@ -31,9 +37,9 @@ def sgm_uniform(n, sigma_min, sigma_max, inner_model, device):
for
ts
in
torch
.
linspace
(
start
,
end
,
n
+
1
)[:
-
1
]
]
sigs
+=
[
0.0
]
return
torch
.
FloatTensor
(
sigs
)
.
to
(
device
)
return
torch
.
FloatTensor
(
sigs
)
def
get_align_your_steps_sigmas
(
n
,
sigma_min
,
sigma_max
,
device
=
'cpu'
):
def
get_align_your_steps_sigmas
(
n
,
sigma_min
,
sigma_max
):
# https://research.nvidia.com/labs/toronto-ai/AlignYourSteps/howto.html
def
loglinear_interp
(
t_steps
,
num_steps
):
"""
...
...
@@ -59,12 +65,12 @@ def get_align_your_steps_sigmas(n, sigma_min, sigma_max, device='cpu'):
else
:
sigmas
.
append
(
0.0
)
return
torch
.
FloatTensor
(
sigmas
)
.
to
(
device
)
return
torch
.
FloatTensor
(
sigmas
)
def
kl_optimal
(
n
,
sigma_min
,
sigma_max
,
device
):
alpha_min
=
torch
.
arctan
(
torch
.
tensor
(
sigma_min
,
device
=
device
))
alpha_max
=
torch
.
arctan
(
torch
.
tensor
(
sigma_max
,
device
=
device
))
step_indices
=
torch
.
arange
(
n
+
1
,
device
=
device
)
def
kl_optimal
(
n
,
sigma_min
,
sigma_max
):
alpha_min
=
torch
.
arctan
(
torch
.
tensor
(
sigma_min
))
alpha_max
=
torch
.
arctan
(
torch
.
tensor
(
sigma_max
))
step_indices
=
torch
.
arange
(
n
+
1
)
sigmas
=
torch
.
tan
(
step_indices
/
n
*
alpha_min
+
(
1.0
-
step_indices
/
n
)
*
alpha_max
)
return
sigmas
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment