Commit 12531998 authored by space-nuko's avatar space-nuko

Working UniPC (for batch size 1)

parent ea9bd9fc
......@@ -6,6 +6,7 @@ titles = {
"GFPGAN": "Restore low quality faces using GFPGAN neural network",
"Euler a": "Euler Ancestral - very creative, each can get a completely different picture depending on step count, setting steps higher than 30-40 does not help",
"DDIM": "Denoising Diffusion Implicit Models - best at inpainting",
"UniPC": "Unified Predictor-Corrector Framework for Fast Sampling of Diffusion Models",
"DPM adaptive": "Ignores step count - uses a number of steps determined by the CFG and resolution",
"Batch count": "How many batches of images to create",
......
from .sampler import UniPCSampler
"""SAMPLING ONLY."""
import torch
from .uni_pc import NoiseScheduleVP, model_wrapper, UniPC
class UniPCSampler(object):
def __init__(self, model, **kwargs):
super().__init__()
self.model = model
to_torch = lambda x: x.clone().detach().to(torch.float32).to(model.device)
self.before_sample = None
self.after_sample = None
self.register_buffer('alphas_cumprod', to_torch(model.alphas_cumprod))
def register_buffer(self, name, attr):
if type(attr) == torch.Tensor:
if attr.device != torch.device("cuda"):
attr = attr.to(torch.device("cuda"))
setattr(self, name, attr)
def set_hooks(self, before, after):
self.before_sample = before
self.after_sample = after
@torch.no_grad()
def sample(self,
S,
batch_size,
shape,
conditioning=None,
callback=None,
normals_sequence=None,
img_callback=None,
quantize_x0=False,
eta=0.,
mask=None,
x0=None,
temperature=1.,
noise_dropout=0.,
score_corrector=None,
corrector_kwargs=None,
verbose=True,
x_T=None,
log_every_t=100,
unconditional_guidance_scale=1.,
unconditional_conditioning=None,
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
**kwargs
):
if conditioning is not None:
if isinstance(conditioning, dict):
cbs = conditioning[list(conditioning.keys())[0]].shape[0]
if cbs != batch_size:
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
else:
if conditioning.shape[0] != batch_size:
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
# sampling
C, H, W = shape
size = (batch_size, C, H, W)
device = self.model.betas.device
if x_T is None:
img = torch.randn(size, device=device)
else:
img = x_T
ns = NoiseScheduleVP('discrete', alphas_cumprod=self.alphas_cumprod)
model_fn = model_wrapper(
lambda x, t, c: self.model.apply_model(x, t, c),
ns,
model_type="noise",
guidance_type="classifier-free",
#condition=conditioning,
#unconditional_condition=unconditional_conditioning,
guidance_scale=unconditional_guidance_scale,
)
uni_pc = UniPC(model_fn, ns, predict_x0=True, thresholding=False, condition=conditioning, unconditional_condition=unconditional_conditioning, before_sample=self.before_sample, after_sample=self.after_sample)
x = uni_pc.sample(img, steps=S, skip_type="time_uniform", method="multistep", order=3, lower_order_final=True)
return x.to(device), None
This diff is collapsed.
......@@ -884,7 +884,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
shared.state.nextjob()
img2img_sampler_name = self.sampler_name if self.sampler_name != 'PLMS' else 'DDIM' # PLMS does not support img2img so we just silently switch ot DDIM
img2img_sampler_name = 'DDIM' # PLMS does not support img2img so we just silently switch ot DDIM
self.sampler = sd_samplers.create_sampler(img2img_sampler_name, self.sd_model)
samples = samples[:, :, self.truncate_y//2:samples.shape[2]-(self.truncate_y+1)//2, self.truncate_x//2:samples.shape[3]-(self.truncate_x+1)//2]
......
......@@ -7,19 +7,27 @@ import torch
from modules.shared import state
from modules import sd_samplers_common, prompt_parser, shared
import modules.models.diffusion.uni_pc
samplers_data_compvis = [
sd_samplers_common.SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), [], {}),
sd_samplers_common.SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), [], {}),
sd_samplers_common.SamplerData('UniPC', lambda model: VanillaStableDiffusionSampler(modules.models.diffusion.uni_pc.UniPCSampler, model), [], {}),
]
class VanillaStableDiffusionSampler:
def __init__(self, constructor, sd_model):
self.sampler = constructor(sd_model)
self.is_ddim = hasattr(self.sampler, 'p_sample_ddim')
self.is_plms = hasattr(self.sampler, 'p_sample_plms')
self.orig_p_sample_ddim = self.sampler.p_sample_plms if self.is_plms else self.sampler.p_sample_ddim
self.is_unipc = isinstance(self.sampler, modules.models.diffusion.uni_pc.UniPCSampler)
self.orig_p_sample_ddim = None
if self.is_plms:
self.orig_p_sample_ddim = self.sampler.p_sample_plms
elif self.is_ddim:
self.orig_p_sample_ddim = self.sampler.p_sample_ddim
self.mask = None
self.nmask = None
self.init_latent = None
......@@ -45,6 +53,15 @@ class VanillaStableDiffusionSampler:
return self.last_latent
def p_sample_ddim_hook(self, x_dec, cond, ts, unconditional_conditioning, *args, **kwargs):
x_dec, ts, cond, unconditional_conditioning = self.before_sample(x_dec, ts, cond, unconditional_conditioning)
res = self.orig_p_sample_ddim(x_dec, cond, ts, unconditional_conditioning=unconditional_conditioning, *args, **kwargs)
x_dec, ts, cond, unconditional_conditioning, res = self.after_sample(x_dec, ts, cond, unconditional_conditioning, res)
return res
def before_sample(self, x, ts, cond, unconditional_conditioning):
if state.interrupted or state.skipped:
raise sd_samplers_common.InterruptedException
......@@ -76,7 +93,7 @@ class VanillaStableDiffusionSampler:
if self.mask is not None:
img_orig = self.sampler.model.q_sample(self.init_latent, ts)
x_dec = img_orig * self.mask + self.nmask * x_dec
x = img_orig * self.mask + self.nmask * x
# Wrap the image conditioning back up since the DDIM code can accept the dict directly.
# Note that they need to be lists because it just concatenates them later.
......@@ -84,7 +101,13 @@ class VanillaStableDiffusionSampler:
cond = {"c_concat": [image_conditioning], "c_crossattn": [cond]}
unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}
res = self.orig_p_sample_ddim(x_dec, cond, ts, unconditional_conditioning=unconditional_conditioning, *args, **kwargs)
return x, ts, cond, unconditional_conditioning
def after_sample(self, x, ts, cond, uncond, res):
if self.is_unipc:
# unipc model_fn returns (pred_x0)
# p_sample_ddim returns (x_prev, pred_x0)
res = (None, res[0])
if self.mask is not None:
self.last_latent = self.init_latent * self.mask + self.nmask * res[1]
......@@ -97,7 +120,7 @@ class VanillaStableDiffusionSampler:
state.sampling_step = self.step
shared.total_tqdm.update()
return res
return x, ts, cond, uncond, res
def initialize(self, p):
self.eta = p.eta if p.eta is not None else shared.opts.eta_ddim
......@@ -107,12 +130,14 @@ class VanillaStableDiffusionSampler:
for fieldname in ['p_sample_ddim', 'p_sample_plms']:
if hasattr(self.sampler, fieldname):
setattr(self.sampler, fieldname, self.p_sample_ddim_hook)
if self.is_unipc:
self.sampler.set_hooks(lambda x, t, c, u: self.before_sample(x, t, c, u), lambda x, t, c, u, r: self.after_sample(x, t, c, u, r))
self.mask = p.mask if hasattr(p, 'mask') else None
self.nmask = p.nmask if hasattr(p, 'nmask') else None
def adjust_steps_if_invalid(self, p, num_steps):
if (self.config.name == 'DDIM' and p.ddim_discretize == 'uniform') or (self.config.name == 'PLMS'):
if ((self.config.name == 'DDIM' or self.config.name == "UniPC") and p.ddim_discretize == 'uniform') or (self.config.name == 'PLMS'):
valid_step = 999 / (1000 // num_steps)
if valid_step == math.floor(valid_step):
return int(valid_step) + 1
......
......@@ -66,6 +66,8 @@ class TestTxt2ImgWorking(unittest.TestCase):
self.assertEqual(requests.post(self.url_txt2img, json=self.simple_txt2img).status_code, 200)
self.simple_txt2img["sampler_index"] = "DDIM"
self.assertEqual(requests.post(self.url_txt2img, json=self.simple_txt2img).status_code, 200)
self.simple_txt2img["sampler_index"] = "UniPC"
self.assertEqual(requests.post(self.url_txt2img, json=self.simple_txt2img).status_code, 200)
def test_txt2img_multiple_batches_performed(self):
self.simple_txt2img["n_iter"] = 2
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment