Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Sign in / Register
Toggle navigation
S
Stable Diffusion Webui
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Locked Files
Issues
0
Issues
0
List
Boards
Labels
Service Desk
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Security & Compliance
Security & Compliance
Dependency List
License Compliance
Packages
Packages
List
Container Registry
Analytics
Analytics
CI / CD
Code Review
Insights
Issues
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
novelai-storage
Stable Diffusion Webui
Commits
0a6628ba
Commit
0a6628ba
authored
Jul 06, 2024
by
AUTOMATIC1111
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
remove mentions of specific samplers from CFG denoiser code
parent
eb112c6f
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
10 additions
and
9 deletions
+10
-9
modules/sd_samplers_cfg_denoiser.py
modules/sd_samplers_cfg_denoiser.py
+7
-9
modules/sd_samplers_timesteps_impl.py
modules/sd_samplers_timesteps_impl.py
+3
-0
No files found.
modules/sd_samplers_cfg_denoiser.py
View file @
0a6628ba
...
@@ -58,6 +58,9 @@ class CFGDenoiser(torch.nn.Module):
...
@@ -58,6 +58,9 @@ class CFGDenoiser(torch.nn.Module):
self
.
model_wrap
=
None
self
.
model_wrap
=
None
self
.
p
=
None
self
.
p
=
None
self
.
cond_scale_miltiplier
=
1.0
self
.
need_last_noise_uncond
=
False
self
.
last_noise_uncond
=
None
self
.
last_noise_uncond
=
None
# NOTE: masking before denoising can cause the original latents to be oversmoothed
# NOTE: masking before denoising can cause the original latents to be oversmoothed
...
@@ -162,8 +165,6 @@ class CFGDenoiser(torch.nn.Module):
...
@@ -162,8 +165,6 @@ class CFGDenoiser(torch.nn.Module):
# so is_edit_model is set to False to support AND composition.
# so is_edit_model is set to False to support AND composition.
is_edit_model
=
shared
.
sd_model
.
cond_stage_key
==
"edit"
and
self
.
image_cfg_scale
is
not
None
and
self
.
image_cfg_scale
!=
1.0
is_edit_model
=
shared
.
sd_model
.
cond_stage_key
==
"edit"
and
self
.
image_cfg_scale
is
not
None
and
self
.
image_cfg_scale
!=
1.0
is_cfg_pp
=
'CFG++'
in
self
.
sampler
.
config
.
name
conds_list
,
tensor
=
prompt_parser
.
reconstruct_multicond_batch
(
cond
,
self
.
step
)
conds_list
,
tensor
=
prompt_parser
.
reconstruct_multicond_batch
(
cond
,
self
.
step
)
uncond
=
prompt_parser
.
reconstruct_cond_batch
(
uncond
,
self
.
step
)
uncond
=
prompt_parser
.
reconstruct_cond_batch
(
uncond
,
self
.
step
)
...
@@ -277,18 +278,15 @@ class CFGDenoiser(torch.nn.Module):
...
@@ -277,18 +278,15 @@ class CFGDenoiser(torch.nn.Module):
denoised_params
=
CFGDenoisedParams
(
x_out
,
state
.
sampling_step
,
state
.
sampling_steps
,
self
.
inner_model
)
denoised_params
=
CFGDenoisedParams
(
x_out
,
state
.
sampling_step
,
state
.
sampling_steps
,
self
.
inner_model
)
cfg_denoised_callback
(
denoised_params
)
cfg_denoised_callback
(
denoised_params
)
if
is_cfg_pp
:
if
self
.
need_last_noise_uncond
:
self
.
last_noise_uncond
=
x_out
[
-
uncond
.
shape
[
0
]:]
self
.
last_noise_uncond
=
torch
.
clone
(
x_out
[
-
uncond
.
shape
[
0
]:])
self
.
last_noise_uncond
=
torch
.
clone
(
self
.
last_noise_uncond
)
if
is_edit_model
:
if
is_edit_model
:
denoised
=
self
.
combine_denoised_for_edit_model
(
x_out
,
cond_scale
)
denoised
=
self
.
combine_denoised_for_edit_model
(
x_out
,
cond_scale
*
self
.
cond_scale_miltiplier
)
elif
skip_uncond
:
elif
skip_uncond
:
denoised
=
self
.
combine_denoised
(
x_out
,
conds_list
,
uncond
,
1.0
)
denoised
=
self
.
combine_denoised
(
x_out
,
conds_list
,
uncond
,
1.0
)
elif
is_cfg_pp
:
denoised
=
self
.
combine_denoised
(
x_out
,
conds_list
,
uncond
,
cond_scale
/
12.5
)
# CFG++ scale of (0, 1) maps to (1.0, 12.5)
else
:
else
:
denoised
=
self
.
combine_denoised
(
x_out
,
conds_list
,
uncond
,
cond_scale
)
denoised
=
self
.
combine_denoised
(
x_out
,
conds_list
,
uncond
,
cond_scale
*
self
.
cond_scale_miltiplier
)
# Blend in the original latents (after)
# Blend in the original latents (after)
if
not
self
.
mask_before_denoising
and
self
.
mask
is
not
None
:
if
not
self
.
mask_before_denoising
and
self
.
mask
is
not
None
:
...
...
modules/sd_samplers_timesteps_impl.py
View file @
0a6628ba
...
@@ -52,6 +52,9 @@ def ddim_cfgpp(model, x, timesteps, extra_args=None, callback=None, disable=None
...
@@ -52,6 +52,9 @@ def ddim_cfgpp(model, x, timesteps, extra_args=None, callback=None, disable=None
sqrt_one_minus_alphas
=
torch
.
sqrt
(
1
-
alphas
)
sqrt_one_minus_alphas
=
torch
.
sqrt
(
1
-
alphas
)
sigmas
=
eta
*
np
.
sqrt
((
1
-
alphas_prev
.
cpu
()
.
numpy
())
/
(
1
-
alphas
.
cpu
())
*
(
1
-
alphas
.
cpu
()
/
alphas_prev
.
cpu
()
.
numpy
()))
sigmas
=
eta
*
np
.
sqrt
((
1
-
alphas_prev
.
cpu
()
.
numpy
())
/
(
1
-
alphas
.
cpu
())
*
(
1
-
alphas
.
cpu
()
/
alphas_prev
.
cpu
()
.
numpy
()))
model
.
cond_scale_miltiplier
=
1
/
12.5
model
.
need_last_noise_uncond
=
True
extra_args
=
{}
if
extra_args
is
None
else
extra_args
extra_args
=
{}
if
extra_args
is
None
else
extra_args
s_in
=
x
.
new_ones
((
x
.
shape
[
0
]))
s_in
=
x
.
new_ones
((
x
.
shape
[
0
]))
s_x
=
x
.
new_ones
((
x
.
shape
[
0
],
1
,
1
,
1
))
s_x
=
x
.
new_ones
((
x
.
shape
[
0
],
1
,
1
,
1
))
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment