Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Sign in / Register
Toggle navigation
S
Stable Diffusion Webui
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Locked Files
Issues
0
Issues
0
List
Boards
Labels
Service Desk
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Security & Compliance
Security & Compliance
Dependency List
License Compliance
Packages
Packages
List
Container Registry
Analytics
Analytics
CI / CD
Code Review
Insights
Issues
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
novelai-storage
Stable Diffusion Webui
Commits
056f06d3
Commit
056f06d3
authored
Nov 02, 2022
by
Muhammad Rizqi Nur
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Reload VAE without reloading sd checkpoint
parent
f8c6468d
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
98 additions
and
18 deletions
+98
-18
modules/sd_models.py
modules/sd_models.py
+7
-8
modules/sd_vae.py
modules/sd_vae.py
+90
-7
webui.py
webui.py
+1
-3
No files found.
modules/sd_models.py
View file @
056f06d3
...
...
@@ -159,15 +159,13 @@ def get_state_dict_from_checkpoint(pl_sd):
return
pl_sd
vae_ignore_keys
=
{
"model_ema.decay"
,
"model_ema.num_updates"
}
def
load_model_weights
(
model
,
checkpoint_info
,
vae_file
=
"auto"
):
checkpoint_file
=
checkpoint_info
.
filename
sd_model_hash
=
checkpoint_info
.
hash
vae_file
=
sd_vae
.
resolve_vae
(
checkpoint_file
,
vae_file
=
vae_file
)
checkpoint_key
=
(
checkpoint_info
,
vae_file
)
checkpoint_key
=
checkpoint_info
if
checkpoint_key
not
in
checkpoints_loaded
:
print
(
f
"Loading weights [{sd_model_hash}] from {checkpoint_file}"
)
...
...
@@ -190,13 +188,12 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"):
devices
.
dtype
=
torch
.
float32
if
shared
.
cmd_opts
.
no_half
else
torch
.
float16
devices
.
dtype_vae
=
torch
.
float32
if
shared
.
cmd_opts
.
no_half
or
shared
.
cmd_opts
.
no_half_vae
else
torch
.
float16
sd_vae
.
load_vae
(
model
,
vae_file
)
model
.
first_stage_model
.
to
(
devices
.
dtype_vae
)
if
shared
.
opts
.
sd_checkpoint_cache
>
0
:
# if PR #4035 were to get merged, restore base VAE first before caching
checkpoints_loaded
[
checkpoint_key
]
=
model
.
state_dict
()
.
copy
()
while
len
(
checkpoints_loaded
)
>
shared
.
opts
.
sd_checkpoint_cache
:
checkpoints_loaded
.
popitem
(
last
=
False
)
# LRU
else
:
vae_name
=
sd_vae
.
get_filename
(
vae_file
)
print
(
f
"Loading weights [{sd_model_hash}] with {vae_name} VAE from cache"
)
...
...
@@ -207,6 +204,8 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"):
model
.
sd_model_checkpoint
=
checkpoint_file
model
.
sd_checkpoint_info
=
checkpoint_info
sd_vae
.
load_vae
(
model
,
vae_file
)
def
load_model
(
checkpoint_info
=
None
):
from
modules
import
lowvram
,
sd_hijack
...
...
@@ -254,14 +253,14 @@ def load_model(checkpoint_info=None):
return
sd_model
def
reload_model_weights
(
sd_model
=
None
,
info
=
None
,
force
=
False
):
def
reload_model_weights
(
sd_model
=
None
,
info
=
None
):
from
modules
import
lowvram
,
devices
,
sd_hijack
checkpoint_info
=
info
or
select_checkpoint
()
if
not
sd_model
:
sd_model
=
shared
.
sd_model
if
sd_model
.
sd_model_checkpoint
==
checkpoint_info
.
filename
and
not
force
:
if
sd_model
.
sd_model_checkpoint
==
checkpoint_info
.
filename
:
return
if
sd_model
.
sd_checkpoint_info
.
config
!=
checkpoint_info
.
config
or
should_hijack_inpainting
(
checkpoint_info
)
!=
should_hijack_inpainting
(
sd_model
.
sd_checkpoint_info
):
...
...
modules/sd_vae.py
View file @
056f06d3
import
torch
import
os
from
collections
import
namedtuple
from
modules
import
shared
,
devices
from
modules
import
shared
,
devices
,
script_callbacks
from
modules.paths
import
models_path
import
glob
model_dir
=
"Stable-diffusion"
model_path
=
os
.
path
.
abspath
(
os
.
path
.
join
(
models_path
,
model_dir
))
vae_dir
=
"VAE"
vae_path
=
os
.
path
.
abspath
(
os
.
path
.
join
(
models_path
,
vae_dir
))
vae_ignore_keys
=
{
"model_ema.decay"
,
"model_ema.num_updates"
}
default_vae_dict
=
{
"auto"
:
"auto"
,
"None"
:
"None"
}
default_vae_list
=
[
"auto"
,
"None"
]
default_vae_values
=
[
default_vae_dict
[
x
]
for
x
in
default_vae_list
]
vae_dict
=
dict
(
default_vae_dict
)
vae_list
=
list
(
default_vae_list
)
first_load
=
True
base_vae
=
None
loaded_vae_file
=
None
checkpoint_info
=
None
def
get_base_vae
(
model
):
if
base_vae
is
not
None
and
checkpoint_info
==
model
.
sd_checkpoint_info
and
model
:
return
base_vae
return
None
def
store_base_vae
(
model
):
global
base_vae
,
checkpoint_info
if
checkpoint_info
!=
model
.
sd_checkpoint_info
:
base_vae
=
model
.
first_stage_model
.
state_dict
()
.
copy
()
checkpoint_info
=
model
.
sd_checkpoint_info
def
delete_base_vae
():
global
base_vae
,
checkpoint_info
base_vae
=
None
checkpoint_info
=
None
def
restore_base_vae
(
model
):
global
base_vae
,
checkpoint_info
if
base_vae
is
not
None
and
checkpoint_info
==
model
.
sd_checkpoint_info
:
load_vae_dict
(
model
,
base_vae
)
delete_base_vae
()
def
get_filename
(
filepath
):
return
os
.
path
.
splitext
(
os
.
path
.
basename
(
filepath
))[
0
]
def
refresh_vae_list
(
vae_path
=
vae_path
,
model_path
=
model_path
):
global
vae_dict
,
vae_list
res
=
{}
...
...
@@ -43,6 +82,7 @@ def refresh_vae_list(vae_path=vae_path, model_path=model_path):
vae_dict
.
update
(
res
)
return
vae_list
def
resolve_vae
(
checkpoint_file
,
vae_file
=
"auto"
):
global
first_load
,
vae_dict
,
vae_list
# save_settings = False
...
...
@@ -96,24 +136,26 @@ def resolve_vae(checkpoint_file, vae_file="auto"):
return
vae_file
def
load_vae
(
model
,
vae_file
):
global
first_load
,
vae_dict
,
vae_list
def
load_vae
(
model
,
vae_file
=
None
):
global
first_load
,
vae_dict
,
vae_list
,
loaded_vae_file
# save_settings = False
if
vae_file
:
print
(
f
"Loading VAE weights from: {vae_file}"
)
vae_ckpt
=
torch
.
load
(
vae_file
,
map_location
=
shared
.
weight_load_location
)
vae_dict_1
=
{
k
:
v
for
k
,
v
in
vae_ckpt
[
"state_dict"
]
.
items
()
if
k
[
0
:
4
]
!=
"loss"
and
k
not
in
vae_ignore_keys
}
model
.
first_stage_model
.
load_state_dict
(
vae_dict_1
)
load_vae_dict
(
model
,
vae_dict_1
)
# If vae used is not in dict, update it
# It will be removed on refresh though
if
vae_file
is
not
None
:
# If vae used is not in dict, update it
# It will be removed on refresh though
vae_opt
=
get_filename
(
vae_file
)
if
vae_opt
not
in
vae_dict
:
vae_dict
[
vae_opt
]
=
vae_file
vae_list
.
append
(
vae_opt
)
loaded_vae_file
=
vae_file
"""
# Save current VAE to VAE settings, maybe? will it work?
if save_settings:
...
...
@@ -124,4 +166,45 @@ def load_vae(model, vae_file):
"""
first_load
=
False
# don't call this from outside
def
load_vae_dict
(
model
,
vae_dict_1
=
None
):
if
vae_dict_1
:
store_base_vae
(
model
)
model
.
first_stage_model
.
load_state_dict
(
vae_dict_1
)
else
:
restore_base_vae
()
model
.
first_stage_model
.
to
(
devices
.
dtype_vae
)
def
reload_vae_weights
(
sd_model
=
None
,
vae_file
=
"auto"
):
from
modules
import
lowvram
,
devices
,
sd_hijack
if
not
sd_model
:
sd_model
=
shared
.
sd_model
checkpoint_info
=
sd_model
.
sd_checkpoint_info
checkpoint_file
=
checkpoint_info
.
filename
vae_file
=
resolve_vae
(
checkpoint_file
,
vae_file
=
vae_file
)
if
loaded_vae_file
==
vae_file
:
return
if
shared
.
cmd_opts
.
lowvram
or
shared
.
cmd_opts
.
medvram
:
lowvram
.
send_everything_to_cpu
()
else
:
sd_model
.
to
(
devices
.
cpu
)
sd_hijack
.
model_hijack
.
undo_hijack
(
sd_model
)
load_vae
(
sd_model
,
vae_file
)
sd_hijack
.
model_hijack
.
hijack
(
sd_model
)
script_callbacks
.
model_loaded_callback
(
sd_model
)
if
not
shared
.
cmd_opts
.
lowvram
and
not
shared
.
cmd_opts
.
medvram
:
sd_model
.
to
(
devices
.
device
)
print
(
f
"VAE Weights loaded."
)
return
sd_model
webui.py
View file @
056f06d3
...
...
@@ -81,9 +81,7 @@ def initialize():
modules
.
sd_vae
.
refresh_vae_list
()
modules
.
sd_models
.
load_model
()
shared
.
opts
.
onchange
(
"sd_model_checkpoint"
,
wrap_queued_call
(
lambda
:
modules
.
sd_models
.
reload_model_weights
()))
# I don't know what needs to be done to only reload VAE, with all those hijacks callbacks, and lowvram,
# so for now this reloads the whole model too
shared
.
opts
.
onchange
(
"sd_vae"
,
wrap_queued_call
(
lambda
:
modules
.
sd_models
.
reload_model_weights
(
force
=
True
)),
call
=
False
)
shared
.
opts
.
onchange
(
"sd_vae"
,
wrap_queued_call
(
lambda
:
modules
.
sd_vae
.
reload_vae_weights
()),
call
=
False
)
shared
.
opts
.
onchange
(
"sd_hypernetwork"
,
wrap_queued_call
(
lambda
:
modules
.
hypernetworks
.
hypernetwork
.
load_hypernetwork
(
shared
.
opts
.
sd_hypernetwork
)))
shared
.
opts
.
onchange
(
"sd_hypernetwork_strength"
,
modules
.
hypernetworks
.
hypernetwork
.
apply_strength
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment