Commit 03a80f19 authored by Vladimir Mandic's avatar Vladimir Mandic Committed by GitHub

add pbar to unipc

parent dfeee786
......@@ -71,7 +71,7 @@ class UniPCSampler(object):
# sampling
C, H, W = shape
size = (batch_size, C, H, W)
print(f'Data shape for UniPC sampling is {size}')
# print(f'Data shape for UniPC sampling is {size}')
device = self.model.betas.device
if x_T is None:
......
import torch
import torch.nn.functional as F
import math
from tqdm.auto import trange
class NoiseScheduleVP:
......@@ -750,7 +751,7 @@ class UniPC:
if method == 'multistep':
assert steps >= order, "UniPC order must be < sampling steps"
timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
print(f"Running UniPC Sampling with {timesteps.shape[0]} timesteps, order {order}")
#print(f"Running UniPC Sampling with {timesteps.shape[0]} timesteps, order {order}")
assert timesteps.shape[0] - 1 == steps
with torch.no_grad():
vec_t = timesteps[0].expand((x.shape[0]))
......@@ -766,7 +767,7 @@ class UniPC:
self.after_update(x, model_x)
model_prev_list.append(model_x)
t_prev_list.append(vec_t)
for step in range(order, steps + 1):
for step in trange(order, steps + 1):
vec_t = timesteps[step].expand(x.shape[0])
if lower_order_final:
step_order = min(order, steps + 1 - step)
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment