Commit 03650022 authored by Sj-Si's avatar Sj-Si

Merge changes from dev

parents 0726a6e1 cb5b335a
......@@ -20,6 +20,12 @@ jobs:
cache-dependency-path: |
**/requirements*txt
launch.py
- name: Cache models
id: cache-models
uses: actions/cache@v3
with:
path: models
key: "2023-12-30"
- name: Install test dependencies
run: pip install wait-for-it -r requirements-test.txt
env:
......@@ -33,6 +39,8 @@ jobs:
TORCH_INDEX_URL: https://download.pytorch.org/whl/cpu
WEBUI_LAUNCH_LIVE_OUTPUT: "1"
PYTHONUNBUFFERED: "1"
- name: Print installed packages
run: pip freeze
- name: Start test server
run: >
python -m coverage run
......@@ -49,7 +57,7 @@ jobs:
2>&1 | tee output.txt &
- name: Run tests
run: |
wait-for-it --service 127.0.0.1:7860 -t 600
wait-for-it --service 127.0.0.1:7860 -t 20
python -m pytest -vv --junitxml=test/results.xml --cov . --cov-report=xml --verify-base-url test
- name: Kill test server
if: always()
......
......@@ -37,3 +37,4 @@ notification.mp3
/node_modules
/package-lock.json
/.coverage*
/test/test_outputs
# Stable Diffusion web UI
A browser interface based on Gradio library for Stable Diffusion.
A web interface for Stable Diffusion, implemented using Gradio library.
![](screenshot.png)
......@@ -151,11 +151,12 @@ Licenses for borrowed code can be found in `Settings -> Licenses` screen, and al
- Stable Diffusion - https://github.com/Stability-AI/stablediffusion, https://github.com/CompVis/taming-transformers
- k-diffusion - https://github.com/crowsonkb/k-diffusion.git
- GFPGAN - https://github.com/TencentARC/GFPGAN.git
- CodeFormer - https://github.com/sczhou/CodeFormer
- ESRGAN - https://github.com/xinntao/ESRGAN
- SwinIR - https://github.com/JingyunLiang/SwinIR
- Swin2SR - https://github.com/mv-lab/swin2sr
- Spandrel - https://github.com/chaiNNer-org/spandrel implementing
- GFPGAN - https://github.com/TencentARC/GFPGAN.git
- CodeFormer - https://github.com/sczhou/CodeFormer
- ESRGAN - https://github.com/xinntao/ESRGAN
- SwinIR - https://github.com/JingyunLiang/SwinIR
- Swin2SR - https://github.com/mv-lab/swin2sr
- LDSR - https://github.com/Hafiidz/latent-diffusion
- MiDaS - https://github.com/isl-org/MiDaS
- Ideas for optimizations - https://github.com/basujindal/stable-diffusion
......
model:
target: sgm.models.diffusion.DiffusionEngine
params:
scale_factor: 0.13025
disable_first_stage_autocast: True
denoiser_config:
target: sgm.modules.diffusionmodules.denoiser.DiscreteDenoiser
params:
num_idx: 1000
weighting_config:
target: sgm.modules.diffusionmodules.denoiser_weighting.EpsWeighting
scaling_config:
target: sgm.modules.diffusionmodules.denoiser_scaling.EpsScaling
discretization_config:
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
network_config:
target: sgm.modules.diffusionmodules.openaimodel.UNetModel
params:
adm_in_channels: 2816
num_classes: sequential
use_checkpoint: True
in_channels: 9
out_channels: 4
model_channels: 320
attention_resolutions: [4, 2]
num_res_blocks: 2
channel_mult: [1, 2, 4]
num_head_channels: 64
use_spatial_transformer: True
use_linear_in_transformer: True
transformer_depth: [1, 2, 10] # note: the first is unused (due to attn_res starting at 2) 32, 16, 8 --> 64, 32, 16
context_dim: 2048
spatial_transformer_attn_type: softmax-xformers
legacy: False
conditioner_config:
target: sgm.modules.GeneralConditioner
params:
emb_models:
# crossattn cond
- is_trainable: False
input_key: txt
target: sgm.modules.encoders.modules.FrozenCLIPEmbedder
params:
layer: hidden
layer_idx: 11
# crossattn and vector cond
- is_trainable: False
input_key: txt
target: sgm.modules.encoders.modules.FrozenOpenCLIPEmbedder2
params:
arch: ViT-bigG-14
version: laion2b_s39b_b160k
freeze: True
layer: penultimate
always_return_pooled: True
legacy: False
# vector cond
- is_trainable: False
input_key: original_size_as_tuple
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
params:
outdim: 256 # multiplied by two
# vector cond
- is_trainable: False
input_key: crop_coords_top_left
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
params:
outdim: 256 # multiplied by two
# vector cond
- is_trainable: False
input_key: target_size_as_tuple
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
params:
outdim: 256 # multiplied by two
first_stage_config:
target: sgm.models.autoencoder.AutoencoderKLInferenceWrapper
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
attn_type: vanilla-xformers
double_z: true
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult: [1, 2, 4, 4]
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
......@@ -3,6 +3,9 @@ import os
from collections import namedtuple
import enum
import torch.nn as nn
import torch.nn.functional as F
from modules import sd_models, cache, errors, hashes, shared
NetworkWeights = namedtuple('NetworkWeights', ['network_key', 'sd_key', 'w', 'sd_module'])
......@@ -115,6 +118,29 @@ class NetworkModule:
if hasattr(self.sd_module, 'weight'):
self.shape = self.sd_module.weight.shape
self.ops = None
self.extra_kwargs = {}
if isinstance(self.sd_module, nn.Conv2d):
self.ops = F.conv2d
self.extra_kwargs = {
'stride': self.sd_module.stride,
'padding': self.sd_module.padding
}
elif isinstance(self.sd_module, nn.Linear):
self.ops = F.linear
elif isinstance(self.sd_module, nn.LayerNorm):
self.ops = F.layer_norm
self.extra_kwargs = {
'normalized_shape': self.sd_module.normalized_shape,
'eps': self.sd_module.eps
}
elif isinstance(self.sd_module, nn.GroupNorm):
self.ops = F.group_norm
self.extra_kwargs = {
'num_groups': self.sd_module.num_groups,
'eps': self.sd_module.eps
}
self.dim = None
self.bias = weights.w.get("bias")
self.alpha = weights.w["alpha"].item() if "alpha" in weights.w else None
......@@ -137,7 +163,7 @@ class NetworkModule:
def finalize_updown(self, updown, orig_weight, output_shape, ex_bias=None):
if self.bias is not None:
updown = updown.reshape(self.bias.shape)
updown += self.bias.to(orig_weight.device, dtype=orig_weight.dtype)
updown += self.bias.to(orig_weight.device, dtype=updown.dtype)
updown = updown.reshape(output_shape)
if len(output_shape) == 4:
......@@ -155,5 +181,10 @@ class NetworkModule:
raise NotImplementedError()
def forward(self, x, y):
"""A general forward implementation for all modules"""
if self.ops is None:
raise NotImplementedError()
else:
updown, ex_bias = self.calc_updown(self.sd_module.weight)
return y + self.ops(x, weight=updown, bias=ex_bias, **self.extra_kwargs)
......@@ -18,9 +18,9 @@ class NetworkModuleFull(network.NetworkModule):
def calc_updown(self, orig_weight):
output_shape = self.weight.shape
updown = self.weight.to(orig_weight.device, dtype=orig_weight.dtype)
updown = self.weight.to(orig_weight.device)
if self.ex_bias is not None:
ex_bias = self.ex_bias.to(orig_weight.device, dtype=orig_weight.dtype)
ex_bias = self.ex_bias.to(orig_weight.device)
else:
ex_bias = None
......
......@@ -22,12 +22,12 @@ class NetworkModuleGLora(network.NetworkModule):
self.w2b = weights.w["b2.weight"]
def calc_updown(self, orig_weight):
w1a = self.w1a.to(orig_weight.device, dtype=orig_weight.dtype)
w1b = self.w1b.to(orig_weight.device, dtype=orig_weight.dtype)
w2a = self.w2a.to(orig_weight.device, dtype=orig_weight.dtype)
w2b = self.w2b.to(orig_weight.device, dtype=orig_weight.dtype)
w1a = self.w1a.to(orig_weight.device)
w1b = self.w1b.to(orig_weight.device)
w2a = self.w2a.to(orig_weight.device)
w2b = self.w2b.to(orig_weight.device)
output_shape = [w1a.size(0), w1b.size(1)]
updown = ((w2b @ w1b) + ((orig_weight @ w2a) @ w1a))
updown = ((w2b @ w1b) + ((orig_weight.to(dtype = w1a.dtype) @ w2a) @ w1a))
return self.finalize_updown(updown, orig_weight, output_shape)
......@@ -27,16 +27,16 @@ class NetworkModuleHada(network.NetworkModule):
self.t2 = weights.w.get("hada_t2")
def calc_updown(self, orig_weight):
w1a = self.w1a.to(orig_weight.device, dtype=orig_weight.dtype)
w1b = self.w1b.to(orig_weight.device, dtype=orig_weight.dtype)
w2a = self.w2a.to(orig_weight.device, dtype=orig_weight.dtype)
w2b = self.w2b.to(orig_weight.device, dtype=orig_weight.dtype)
w1a = self.w1a.to(orig_weight.device)
w1b = self.w1b.to(orig_weight.device)
w2a = self.w2a.to(orig_weight.device)
w2b = self.w2b.to(orig_weight.device)
output_shape = [w1a.size(0), w1b.size(1)]
if self.t1 is not None:
output_shape = [w1a.size(1), w1b.size(1)]
t1 = self.t1.to(orig_weight.device, dtype=orig_weight.dtype)
t1 = self.t1.to(orig_weight.device)
updown1 = lyco_helpers.make_weight_cp(t1, w1a, w1b)
output_shape += t1.shape[2:]
else:
......@@ -45,7 +45,7 @@ class NetworkModuleHada(network.NetworkModule):
updown1 = lyco_helpers.rebuild_conventional(w1a, w1b, output_shape)
if self.t2 is not None:
t2 = self.t2.to(orig_weight.device, dtype=orig_weight.dtype)
t2 = self.t2.to(orig_weight.device)
updown2 = lyco_helpers.make_weight_cp(t2, w2a, w2b)
else:
updown2 = lyco_helpers.rebuild_conventional(w2a, w2b, output_shape)
......
......@@ -17,7 +17,7 @@ class NetworkModuleIa3(network.NetworkModule):
self.on_input = weights.w["on_input"].item()
def calc_updown(self, orig_weight):
w = self.w.to(orig_weight.device, dtype=orig_weight.dtype)
w = self.w.to(orig_weight.device)
output_shape = [w.size(0), orig_weight.size(1)]
if self.on_input:
......
......@@ -37,22 +37,22 @@ class NetworkModuleLokr(network.NetworkModule):
def calc_updown(self, orig_weight):
if self.w1 is not None:
w1 = self.w1.to(orig_weight.device, dtype=orig_weight.dtype)
w1 = self.w1.to(orig_weight.device)
else:
w1a = self.w1a.to(orig_weight.device, dtype=orig_weight.dtype)
w1b = self.w1b.to(orig_weight.device, dtype=orig_weight.dtype)
w1a = self.w1a.to(orig_weight.device)
w1b = self.w1b.to(orig_weight.device)
w1 = w1a @ w1b
if self.w2 is not None:
w2 = self.w2.to(orig_weight.device, dtype=orig_weight.dtype)
w2 = self.w2.to(orig_weight.device)
elif self.t2 is None:
w2a = self.w2a.to(orig_weight.device, dtype=orig_weight.dtype)
w2b = self.w2b.to(orig_weight.device, dtype=orig_weight.dtype)
w2a = self.w2a.to(orig_weight.device)
w2b = self.w2b.to(orig_weight.device)
w2 = w2a @ w2b
else:
t2 = self.t2.to(orig_weight.device, dtype=orig_weight.dtype)
w2a = self.w2a.to(orig_weight.device, dtype=orig_weight.dtype)
w2b = self.w2b.to(orig_weight.device, dtype=orig_weight.dtype)
t2 = self.t2.to(orig_weight.device)
w2a = self.w2a.to(orig_weight.device)
w2b = self.w2b.to(orig_weight.device)
w2 = lyco_helpers.make_weight_cp(t2, w2a, w2b)
output_shape = [w1.size(0) * w2.size(0), w1.size(1) * w2.size(1)]
......
......@@ -61,13 +61,13 @@ class NetworkModuleLora(network.NetworkModule):
return module
def calc_updown(self, orig_weight):
up = self.up_model.weight.to(orig_weight.device, dtype=orig_weight.dtype)
down = self.down_model.weight.to(orig_weight.device, dtype=orig_weight.dtype)
up = self.up_model.weight.to(orig_weight.device)
down = self.down_model.weight.to(orig_weight.device)
output_shape = [up.size(0), down.size(1)]
if self.mid_model is not None:
# cp-decomposition
mid = self.mid_model.weight.to(orig_weight.device, dtype=orig_weight.dtype)
mid = self.mid_model.weight.to(orig_weight.device)
updown = lyco_helpers.rebuild_cp_decomposition(up, down, mid)
output_shape += mid.shape[2:]
else:
......
......@@ -18,10 +18,10 @@ class NetworkModuleNorm(network.NetworkModule):
def calc_updown(self, orig_weight):
output_shape = self.w_norm.shape
updown = self.w_norm.to(orig_weight.device, dtype=orig_weight.dtype)
updown = self.w_norm.to(orig_weight.device)
if self.b_norm is not None:
ex_bias = self.b_norm.to(orig_weight.device, dtype=orig_weight.dtype)
ex_bias = self.b_norm.to(orig_weight.device)
else:
ex_bias = None
......
......@@ -56,7 +56,7 @@ class NetworkModuleOFT(network.NetworkModule):
self.block_size, self.num_blocks = factorization(self.out_dim, self.dim)
def calc_updown(self, orig_weight):
oft_blocks = self.oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype)
oft_blocks = self.oft_blocks.to(orig_weight.device)
eye = torch.eye(self.block_size, device=self.oft_blocks.device)
if self.is_kohya:
......@@ -66,7 +66,7 @@ class NetworkModuleOFT(network.NetworkModule):
block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8))
oft_blocks = torch.matmul(eye + block_Q, (eye - block_Q).float().inverse())
R = oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype)
R = oft_blocks.to(orig_weight.device)
# This errors out for MultiheadAttention, might need to be handled up-stream
merged_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.num_blocks, n=self.block_size)
......@@ -77,6 +77,6 @@ class NetworkModuleOFT(network.NetworkModule):
)
merged_weight = rearrange(merged_weight, 'k m ... -> (k m) ...')
updown = merged_weight.to(orig_weight.device, dtype=orig_weight.dtype) - orig_weight
updown = merged_weight.to(orig_weight.device) - orig_weight.to(merged_weight.dtype)
output_shape = orig_weight.shape
return self.finalize_updown(updown, orig_weight, output_shape)
import gradio as gr
import logging
import os
import re
......@@ -314,7 +315,12 @@ def load_networks(names, te_multipliers=None, unet_multipliers=None, dyn_dims=No
emb_db.skipped_embeddings[name] = embedding
if failed_to_load_networks:
sd_hijack.model_hijack.comments.append("Networks not found: " + ", ".join(failed_to_load_networks))
lora_not_found_message = f'Lora not found: {", ".join(failed_to_load_networks)}'
sd_hijack.model_hijack.comments.append(lora_not_found_message)
if shared.opts.lora_not_found_warning_console:
print(f'\n{lora_not_found_message}\n')
if shared.opts.lora_not_found_gradio_warning:
gr.Warning(lora_not_found_message)
purge_networks_from_memory()
......@@ -389,18 +395,26 @@ def network_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn
if module is not None and hasattr(self, 'weight'):
try:
with torch.no_grad():
updown, ex_bias = module.calc_updown(self.weight)
if getattr(self, 'fp16_weight', None) is None:
weight = self.weight
bias = self.bias
else:
weight = self.fp16_weight.clone().to(self.weight.device)
bias = getattr(self, 'fp16_bias', None)
if bias is not None:
bias = bias.clone().to(self.bias.device)
updown, ex_bias = module.calc_updown(weight)
if len(self.weight.shape) == 4 and self.weight.shape[1] == 9:
if len(weight.shape) == 4 and weight.shape[1] == 9:
# inpainting model. zero pad updown to make channel[1] 4 to 9
updown = torch.nn.functional.pad(updown, (0, 0, 0, 0, 0, 5))
self.weight += updown
self.weight.copy_((weight.to(dtype=updown.dtype) + updown).to(dtype=self.weight.dtype))
if ex_bias is not None and hasattr(self, 'bias'):
if self.bias is None:
self.bias = torch.nn.Parameter(ex_bias)
self.bias = torch.nn.Parameter(ex_bias).to(self.weight.dtype)
else:
self.bias += ex_bias
self.bias.copy_((bias + ex_bias).to(dtype=self.bias.dtype))
except RuntimeError as e:
logging.debug(f"Network {net.name} layer {network_layer_name}: {e}")
extra_network_lora.errors[net.name] = extra_network_lora.errors.get(net.name, 0) + 1
......@@ -444,23 +458,23 @@ def network_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn
self.network_current_names = wanted_names
def network_forward(module, input, original_forward):
def network_forward(org_module, input, original_forward):
"""
Old way of applying Lora by executing operations during layer's forward.
Stacking many loras this way results in big performance degradation.
"""
if len(loaded_networks) == 0:
return original_forward(module, input)
return original_forward(org_module, input)
input = devices.cond_cast_unet(input)
network_restore_weights_from_backup(module)
network_reset_cached_weight(module)
network_restore_weights_from_backup(org_module)
network_reset_cached_weight(org_module)
y = original_forward(module, input)
y = original_forward(org_module, input)
network_layer_name = getattr(module, 'network_layer_name', None)
network_layer_name = getattr(org_module, 'network_layer_name', None)
for lora in loaded_networks:
module = lora.modules.get(network_layer_name, None)
if module is None:
......
......@@ -39,6 +39,8 @@ shared.options_templates.update(shared.options_section(('extra_networks', "Extra
"lora_show_all": shared.OptionInfo(False, "Always show all networks on the Lora page").info("otherwise, those detected as for incompatible version of Stable Diffusion will be hidden"),
"lora_hide_unknown_for_versions": shared.OptionInfo([], "Hide networks of unknown versions for model versions", gr.CheckboxGroup, {"choices": ["SD1", "SD2", "SDXL"]}),
"lora_in_memory_limit": shared.OptionInfo(0, "Number of Lora networks to keep cached in memory", gr.Number, {"precision": 0}),
"lora_not_found_warning_console": shared.OptionInfo(False, "Lora not found warning in console"),
"lora_not_found_gradio_warning": shared.OptionInfo(False, "Lora not found warning popup in webui"),
}))
......
......@@ -54,12 +54,13 @@ class LoraUserMetadataEditor(ui_extra_networks_user_metadata.UserMetadataEditor)
self.slider_preferred_weight = None
self.edit_notes = None
def save_lora_user_metadata(self, name, desc, sd_version, activation_text, preferred_weight, notes):
def save_lora_user_metadata(self, name, desc, sd_version, activation_text, preferred_weight, negative_text, notes):
user_metadata = self.get_user_metadata(name)
user_metadata["description"] = desc
user_metadata["sd version"] = sd_version
user_metadata["activation text"] = activation_text
user_metadata["preferred weight"] = preferred_weight
user_metadata["negative text"] = negative_text
user_metadata["notes"] = notes
self.write_user_metadata(name, user_metadata)
......@@ -127,6 +128,7 @@ class LoraUserMetadataEditor(ui_extra_networks_user_metadata.UserMetadataEditor)
gr.HighlightedText.update(value=gradio_tags, visible=True if tags else False),
user_metadata.get('activation text', ''),
float(user_metadata.get('preferred weight', 0.0)),
user_metadata.get('negative text', ''),
gr.update(visible=True if tags else False),
gr.update(value=self.generate_random_prompt_from_tags(tags), visible=True if tags else False),
]
......@@ -162,7 +164,7 @@ class LoraUserMetadataEditor(ui_extra_networks_user_metadata.UserMetadataEditor)
self.taginfo = gr.HighlightedText(label="Training dataset tags")
self.edit_activation_text = gr.Text(label='Activation text', info="Will be added to prompt along with Lora")
self.slider_preferred_weight = gr.Slider(label='Preferred weight', info="Set to 0 to disable", minimum=0.0, maximum=2.0, step=0.01)
self.edit_negative_text = gr.Text(label='Negative prompt', info="Will be added to negative prompts")
with gr.Row() as row_random_prompt:
with gr.Column(scale=8):
random_prompt = gr.Textbox(label='Random prompt', lines=4, max_lines=4, interactive=False)
......@@ -198,6 +200,7 @@ class LoraUserMetadataEditor(ui_extra_networks_user_metadata.UserMetadataEditor)
self.taginfo,
self.edit_activation_text,
self.slider_preferred_weight,
self.edit_negative_text,
row_random_prompt,
random_prompt,
]
......@@ -211,7 +214,9 @@ class LoraUserMetadataEditor(ui_extra_networks_user_metadata.UserMetadataEditor)
self.select_sd_version,
self.edit_activation_text,
self.slider_preferred_weight,
self.edit_negative_text,
self.edit_notes,
]
self.setup_save_handler(self.button_save, self.save_lora_user_metadata, edited_components)
......@@ -48,6 +48,11 @@ class ExtraNetworksPageLora(ui_extra_networks.ExtraNetworksPage):
if activation_text:
item["prompt"] += " + " + quote_js(" " + activation_text)
negative_prompt = item["user_metadata"].get("negative text")
item["negative_prompt"] = quote_js("")
if negative_prompt:
item["negative_prompt"] = quote_js('(' + negative_prompt + ':1)')
sd_version = item["user_metadata"].get("sd version")
if sd_version in network.SdVersion.__members__:
item["sd_version"] = sd_version
......
import sys
import PIL.Image
import numpy as np
import torch
from tqdm import tqdm
import modules.upscaler
from modules import devices, modelloader, script_callbacks, errors
from scunet_model_arch import SCUNet
from modules.modelloader import load_file_from_url
from modules.shared import opts
from modules import devices, errors, modelloader, script_callbacks, shared, upscaler_utils
class UpscalerScuNET(modules.upscaler.Upscaler):
......@@ -42,100 +35,37 @@ class UpscalerScuNET(modules.upscaler.Upscaler):
scalers.append(scaler_data2)
self.scalers = scalers
@staticmethod
@torch.no_grad()
def tiled_inference(img, model):
# test the image tile by tile
h, w = img.shape[2:]
tile = opts.SCUNET_tile
tile_overlap = opts.SCUNET_tile_overlap
if tile == 0:
return model(img)
device = devices.get_device_for('scunet')
assert tile % 8 == 0, "tile size should be a multiple of window_size"
sf = 1
stride = tile - tile_overlap
h_idx_list = list(range(0, h - tile, stride)) + [h - tile]
w_idx_list = list(range(0, w - tile, stride)) + [w - tile]
E = torch.zeros(1, 3, h * sf, w * sf, dtype=img.dtype, device=device)
W = torch.zeros_like(E, dtype=devices.dtype, device=device)
with tqdm(total=len(h_idx_list) * len(w_idx_list), desc="ScuNET tiles") as pbar:
for h_idx in h_idx_list:
for w_idx in w_idx_list:
in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile]
out_patch = model(in_patch)
out_patch_mask = torch.ones_like(out_patch)
E[
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
].add_(out_patch)
W[
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
].add_(out_patch_mask)
pbar.update(1)
output = E.div_(W)
return output
def do_upscale(self, img: PIL.Image.Image, selected_file):
devices.torch_gc()
try:
model = self.load_model(selected_file)
except Exception as e:
print(f"ScuNET: Unable to load model from {selected_file}: {e}", file=sys.stderr)
return img
device = devices.get_device_for('scunet')
tile = opts.SCUNET_tile
h, w = img.height, img.width
np_img = np.array(img)
np_img = np_img[:, :, ::-1] # RGB to BGR
np_img = np_img.transpose((2, 0, 1)) / 255 # HWC to CHW
torch_img = torch.from_numpy(np_img).float().unsqueeze(0).to(device) # type: ignore
if tile > h or tile > w:
_img = torch.zeros(1, 3, max(h, tile), max(w, tile), dtype=torch_img.dtype, device=torch_img.device)
_img[:, :, :h, :w] = torch_img # pad image
torch_img = _img
torch_output = self.tiled_inference(torch_img, model).squeeze(0)
torch_output = torch_output[:, :h * 1, :w * 1] # remove padding, if any
np_output: np.ndarray = torch_output.float().cpu().clamp_(0, 1).numpy()
del torch_img, torch_output
img = upscaler_utils.upscale_2(
img,
model,
tile_size=shared.opts.SCUNET_tile,
tile_overlap=shared.opts.SCUNET_tile_overlap,
scale=1, # ScuNET is a denoising model, not an upscaler
desc='ScuNET',
)
devices.torch_gc()
output = np_output.transpose((1, 2, 0)) # CHW to HWC
output = output[:, :, ::-1] # BGR to RGB
return PIL.Image.fromarray((output * 255).astype(np.uint8))
return img
def load_model(self, path: str):
device = devices.get_device_for('scunet')
if path.startswith("http"):
# TODO: this doesn't use `path` at all?
filename = load_file_from_url(self.model_url, model_dir=self.model_download_path, file_name=f"{self.name}.pth")
filename = modelloader.load_file_from_url(self.model_url, model_dir=self.model_download_path, file_name=f"{self.name}.pth")
else:
filename = path
model = SCUNet(in_nc=3, config=[4, 4, 4, 4, 4, 4, 4], dim=64)
model.load_state_dict(torch.load(filename), strict=True)
model.eval()
for _, v in model.named_parameters():
v.requires_grad = False
model = model.to(device)
return model
return modelloader.load_spandrel_model(filename, device=device, expected_architecture='SCUNet')
def on_ui_settings():
import gradio as gr
from modules import shared
shared.opts.add_option("SCUNET_tile", shared.OptionInfo(256, "Tile size for SCUNET upscalers.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}, section=('upscaling', "Upscaling")).info("0 = no tiling"))
shared.opts.add_option("SCUNET_tile_overlap", shared.OptionInfo(8, "Tile overlap for SCUNET upscalers.", gr.Slider, {"minimum": 0, "maximum": 64, "step": 1}, section=('upscaling', "Upscaling")).info("Low values = visible seam"))
......
This diff is collapsed.
import logging
import sys
import platform
import numpy as np
import torch
from PIL import Image
from tqdm import tqdm
from modules import modelloader, devices, script_callbacks, shared
from modules.shared import opts, state
from swinir_model_arch import SwinIR
from swinir_model_arch_v2 import Swin2SR
from modules import devices, modelloader, script_callbacks, shared, upscaler_utils
from modules.upscaler import Upscaler, UpscalerData
SWINIR_MODEL_URL = "https://github.com/JingyunLiang/SwinIR/releases/download/v0.0/003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR-L_x4_GAN.pth"
device_swinir = devices.get_device_for('swinir')
logger = logging.getLogger(__name__)
class UpscalerSwinIR(Upscaler):
......@@ -37,26 +32,28 @@ class UpscalerSwinIR(Upscaler):
scalers.append(model_data)
self.scalers = scalers
def do_upscale(self, img, model_file):
use_compile = hasattr(opts, 'SWIN_torch_compile') and opts.SWIN_torch_compile \
and int(torch.__version__.split('.')[0]) >= 2 and platform.system() != "Windows"
current_config = (model_file, opts.SWIN_tile)
def do_upscale(self, img: Image.Image, model_file: str) -> Image.Image:
current_config = (model_file, shared.opts.SWIN_tile)
if use_compile and self._cached_model_config == current_config:
if self._cached_model_config == current_config:
model = self._cached_model
else:
self._cached_model = None
try:
model = self.load_model(model_file)
except Exception as e:
print(f"Failed loading SwinIR model {model_file}: {e}", file=sys.stderr)
return img
model = model.to(device_swinir, dtype=devices.dtype)
if use_compile:
model = torch.compile(model)
self._cached_model = model
self._cached_model_config = current_config
img = upscale(img, model)
img = upscaler_utils.upscale_2(
img,
model,
tile_size=shared.opts.SWIN_tile,
tile_overlap=shared.opts.SWIN_tile_overlap,
scale=model.scale,
desc="SwinIR",
)
devices.torch_gc()
return img
......@@ -69,115 +66,22 @@ class UpscalerSwinIR(Upscaler):
)
else:
filename = path
if filename.endswith(".v2.pth"):
model = Swin2SR(
upscale=scale,
in_chans=3,
img_size=64,
window_size=8,
img_range=1.0,
depths=[6, 6, 6, 6, 6, 6],
embed_dim=180,
num_heads=[6, 6, 6, 6, 6, 6],
mlp_ratio=2,
upsampler="nearest+conv",
resi_connection="1conv",
)
params = None
else:
model = SwinIR(
upscale=scale,
in_chans=3,
img_size=64,
window_size=8,
img_range=1.0,
depths=[6, 6, 6, 6, 6, 6, 6, 6, 6],
embed_dim=240,
num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8],
mlp_ratio=2,
upsampler="nearest+conv",
resi_connection="3conv",
)
params = "params_ema"
pretrained_model = torch.load(filename)
if params is not None:
model.load_state_dict(pretrained_model[params], strict=True)
else:
model.load_state_dict(pretrained_model, strict=True)
return model
model_descriptor = modelloader.load_spandrel_model(
filename,
device=self._get_device(),
prefer_half=(devices.dtype == torch.float16),
expected_architecture="SwinIR",
)
if getattr(shared.opts, 'SWIN_torch_compile', False):
try:
model_descriptor.model.compile()
except Exception:
logger.warning("Failed to compile SwinIR model, fallback to JIT", exc_info=True)
return model_descriptor
def upscale(
img,
model,
tile=None,
tile_overlap=None,
window_size=8,
scale=4,
):
tile = tile or opts.SWIN_tile
tile_overlap = tile_overlap or opts.SWIN_tile_overlap
img = np.array(img)
img = img[:, :, ::-1]
img = np.moveaxis(img, 2, 0) / 255
img = torch.from_numpy(img).float()
img = img.unsqueeze(0).to(device_swinir, dtype=devices.dtype)
with torch.no_grad(), devices.autocast():
_, _, h_old, w_old = img.size()
h_pad = (h_old // window_size + 1) * window_size - h_old
w_pad = (w_old // window_size + 1) * window_size - w_old
img = torch.cat([img, torch.flip(img, [2])], 2)[:, :, : h_old + h_pad, :]
img = torch.cat([img, torch.flip(img, [3])], 3)[:, :, :, : w_old + w_pad]
output = inference(img, model, tile, tile_overlap, window_size, scale)
output = output[..., : h_old * scale, : w_old * scale]
output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy()
if output.ndim == 3:
output = np.transpose(
output[[2, 1, 0], :, :], (1, 2, 0)
) # CHW-RGB to HCW-BGR
output = (output * 255.0).round().astype(np.uint8) # float32 to uint8
return Image.fromarray(output, "RGB")
def inference(img, model, tile, tile_overlap, window_size, scale):
# test the image tile by tile
b, c, h, w = img.size()
tile = min(tile, h, w)
assert tile % window_size == 0, "tile size should be a multiple of window_size"
sf = scale
stride = tile - tile_overlap
h_idx_list = list(range(0, h - tile, stride)) + [h - tile]
w_idx_list = list(range(0, w - tile, stride)) + [w - tile]
E = torch.zeros(b, c, h * sf, w * sf, dtype=devices.dtype, device=device_swinir).type_as(img)
W = torch.zeros_like(E, dtype=devices.dtype, device=device_swinir)
with tqdm(total=len(h_idx_list) * len(w_idx_list), desc="SwinIR tiles") as pbar:
for h_idx in h_idx_list:
if state.interrupted or state.skipped:
break
for w_idx in w_idx_list:
if state.interrupted or state.skipped:
break
in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile]
out_patch = model(in_patch)
out_patch_mask = torch.ones_like(out_patch)
E[
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
].add_(out_patch)
W[
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
].add_(out_patch_mask)
pbar.update(1)
output = E.div_(W)
return output
def _get_device(self):
return devices.get_device_for('swinir')
def on_ui_settings():
......@@ -185,7 +89,6 @@ def on_ui_settings():
shared.opts.add_option("SWIN_tile", shared.OptionInfo(192, "Tile size for all SwinIR.", gr.Slider, {"minimum": 16, "maximum": 512, "step": 16}, section=('upscaling', "Upscaling")))
shared.opts.add_option("SWIN_tile_overlap", shared.OptionInfo(8, "Tile overlap, in pixels for SwinIR. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}, section=('upscaling', "Upscaling")))
if int(torch.__version__.split('.')[0]) >= 2 and platform.system() != "Windows": # torch.compile() require pytorch 2.0 or above, and not on Windows
shared.opts.add_option("SWIN_torch_compile", shared.OptionInfo(False, "Use torch.compile to accelerate SwinIR.", gr.Checkbox, {"interactive": True}, section=('upscaling', "Upscaling")).info("Takes longer on first run"))
......
This diff is collapsed.
This diff is collapsed.
import math
import gradio as gr
from modules import scripts, shared, ui_components, ui_settings, generation_parameters_copypaste
from modules import scripts, shared, ui_components, ui_settings, infotext_utils
from modules.ui_components import FormColumn
......@@ -25,7 +25,7 @@ class ExtraOptionsSection(scripts.Script):
extra_options = shared.opts.extra_options_img2img if is_img2img else shared.opts.extra_options_txt2img
elem_id_tabname = "extra_options_" + ("img2img" if is_img2img else "txt2img")
mapping = {k: v for v, k in generation_parameters_copypaste.infotext_to_setting_name_mapping}
mapping = {k: v for v, k in infotext_utils.infotext_to_setting_name_mapping}
with gr.Blocks() as interface:
with gr.Accordion("Options", open=False, elem_id=elem_id_tabname) if shared.opts.extra_options_accordion and extra_options else gr.Group(elem_id=elem_id_tabname):
......
This diff is collapsed.
This diff is collapsed.
......@@ -183,8 +183,10 @@ onUiLoaded(setupExtraNetworks);
var re_extranet = /<([^:^>]+:[^:]+):[\d.]+>(.*)/;
var re_extranet_g = /<([^:^>]+:[^:]+):[\d.]+>/g;
function tryToRemoveExtraNetworkFromPrompt(textarea, text) {
var m = text.match(re_extranet);
var re_extranet_neg = /\(([^:^>]+:[\d.]+)\)/;
var re_extranet_g_neg = /\(([^:^>]+:[\d.]+)\)/g;
function tryToRemoveExtraNetworkFromPrompt(textarea, text, isNeg) {
var m = text.match(isNeg ? re_extranet_neg : re_extranet);
var replaced = false;
var newTextareaText;
if (m) {
......@@ -192,8 +194,8 @@ function tryToRemoveExtraNetworkFromPrompt(textarea, text) {
var extraTextAfterNet = m[2];
var partToSearch = m[1];
var foundAtPosition = -1;
newTextareaText = textarea.value.replaceAll(re_extranet_g, function(found, net, pos) {
m = found.match(re_extranet);
newTextareaText = textarea.value.replaceAll(isNeg ? re_extranet_g_neg : re_extranet_g, function(found, net, pos) {
m = found.match(isNeg ? re_extranet_neg : re_extranet);
if (m[1] == partToSearch) {
replaced = true;
foundAtPosition = pos;
......@@ -203,7 +205,7 @@ function tryToRemoveExtraNetworkFromPrompt(textarea, text) {
});
if (foundAtPosition >= 0) {
if (newTextareaText.substr(foundAtPosition, extraTextAfterNet.length) == extraTextAfterNet) {
if (extraTextAfterNet && newTextareaText.substr(foundAtPosition, extraTextAfterNet.length) == extraTextAfterNet) {
newTextareaText = newTextareaText.substr(0, foundAtPosition) + newTextareaText.substr(foundAtPosition + extraTextAfterNet.length);
}
if (newTextareaText.substr(foundAtPosition - extraTextBeforeNet.length, extraTextBeforeNet.length) == extraTextBeforeNet) {
......@@ -228,14 +230,23 @@ function tryToRemoveExtraNetworkFromPrompt(textarea, text) {
return false;
}
function cardClicked(tabname, textToAdd, allowNegativePrompt) {
var textarea = allowNegativePrompt ? activePromptTextarea[tabname] : gradioApp().querySelector("#" + tabname + "_prompt > label > textarea");
function updatePromptArea(text, textArea, isNeg) {
if (!tryToRemoveExtraNetworkFromPrompt(textarea, textToAdd)) {
textarea.value = textarea.value + opts.extra_networks_add_text_separator + textToAdd;
if (!tryToRemoveExtraNetworkFromPrompt(textArea, text, isNeg)) {
textArea.value = textArea.value + opts.extra_networks_add_text_separator + text;
}
updateInput(textarea);
updateInput(textArea);
}
function cardClicked(tabname, textToAdd, textToAddNegative, allowNegativePrompt) {
if (textToAddNegative.length > 0) {
updatePromptArea(textToAdd, gradioApp().querySelector("#" + tabname + "_prompt > label > textarea"));
updatePromptArea(textToAddNegative, gradioApp().querySelector("#" + tabname + "_neg_prompt > label > textarea"), true);
} else {
var textarea = allowNegativePrompt ? activePromptTextarea[tabname] : gradioApp().querySelector("#" + tabname + "_prompt > label > textarea");
updatePromptArea(textToAdd, textarea);
}
}
function saveCardPreview(event, tabname, filename) {
......
......@@ -150,6 +150,14 @@ function submit() {
return res;
}
function submit_txt2img_upscale() {
var res = submit(...arguments);
res[2] = selected_gallery_index();
return res;
}
function submit_img2img() {
showSubmitButtons('img2img', false);
......
This diff is collapsed.
......@@ -107,6 +107,8 @@ StableDiffusionTxt2ImgProcessingAPI = PydanticModelGenerator(
{"key": "send_images", "type": bool, "default": True},
{"key": "save_images", "type": bool, "default": False},
{"key": "alwayson_scripts", "type": dict, "default": {}},
{"key": "force_task_id", "type": str, "default": None},
{"key": "infotext", "type": str, "default": None},
]
).generate_model()
......@@ -124,6 +126,8 @@ StableDiffusionImg2ImgProcessingAPI = PydanticModelGenerator(
{"key": "send_images", "type": bool, "default": True},
{"key": "save_images", "type": bool, "default": False},
{"key": "alwayson_scripts", "type": dict, "default": {}},
{"key": "force_task_id", "type": str, "default": None},
{"key": "infotext", "type": str, "default": None},
]
).generate_model()
......
......@@ -62,12 +62,11 @@ def cache(subsection):
if cache_data is None:
with cache_lock:
if cache_data is None:
if not os.path.isfile(cache_filename):
cache_data = {}
else:
try:
with open(cache_filename, "r", encoding="utf8") as file:
cache_data = json.load(file)
except FileNotFoundError:
cache_data = {}
except Exception:
os.replace(cache_filename, os.path.join(script_path, "tmp", "cache.json"))
print('[ERROR] issue occurred while trying to read cache.json, move current cache to tmp/cache.json and create new cache')
......
......@@ -78,6 +78,7 @@ def wrap_gradio_call(func, extra_outputs=None, add_stats=False):
shared.state.skipped = False
shared.state.interrupted = False
shared.state.stopping_generation = False
shared.state.job_count = 0
if not add_stats:
......
......@@ -77,7 +77,9 @@ parser.add_argument("--port", type=int, help="launch gradio with given server po
parser.add_argument("--show-negative-prompt", action='store_true', help="does not do anything", default=False)
parser.add_argument("--ui-config-file", type=str, help="filename to use for ui configuration", default=os.path.join(data_path, 'ui-config.json'))
parser.add_argument("--hide-ui-dir-config", action='store_true', help="hide directory configuration from webui", default=False)
parser.add_argument("--freeze-settings", action='store_true', help="disable editing settings", default=False)
parser.add_argument("--freeze-settings", action='store_true', help="disable editing of all settings globally", default=False)
parser.add_argument("--freeze-settings-in-sections", type=str, help='disable editing settings in specific sections of the settings page by specifying a comma-delimited list such like "saving-images,upscaling". The list of setting names can be found in the modules/shared_options.py file', default=None)
parser.add_argument("--freeze-specific-settings", type=str, help='disable editing of individual settings by specifying a comma-delimited list like "samples_save,samples_format". The list of setting names can be found in the config.json file', default=None)
parser.add_argument("--ui-settings-file", type=str, help="filename to use for ui settings", default=os.path.join(data_path, 'config.json'))
parser.add_argument("--gradio-debug", action='store_true', help="launch gradio with --debug option")
parser.add_argument("--gradio-auth", type=str, help='set gradio authentication like "username:password"; or comma-delimit multiple like "u1:p1,u2:p2,u3:p3"', default=None)
......
This diff is collapsed.
This diff is collapsed.
import os
from __future__ import annotations
import cv2
import torch
import modules.face_restoration
import modules.shared
from modules import shared, devices, modelloader, errors
from modules.paths import models_path
# codeformer people made a choice to include modified basicsr library to their project which makes
# it utterly impossible to use it alongside with other libraries that also use basicsr, like GFPGAN.
# I am making a choice to include some files from codeformer to work around this issue.
model_dir = "Codeformer"
model_path = os.path.join(models_path, model_dir)
model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth'
import logging
codeformer = None
import torch
from modules import (
devices,
errors,
face_restoration,
face_restoration_utils,
modelloader,
shared,
)
def setup_model(dirname):
os.makedirs(model_path, exist_ok=True)
logger = logging.getLogger(__name__)
path = modules.paths.paths.get("CodeFormer", None)
if path is None:
return
model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth'
model_download_name = 'codeformer-v0.1.0.pth'
try:
from torchvision.transforms.functional import normalize
from modules.codeformer.codeformer_arch import CodeFormer
from basicsr.utils import img2tensor, tensor2img
from facelib.utils.face_restoration_helper import FaceRestoreHelper
from facelib.detection.retinaface import retinaface
# used by e.g. postprocessing_codeformer.py
codeformer: face_restoration.FaceRestoration | None = None
net_class = CodeFormer
class FaceRestorerCodeFormer(modules.face_restoration.FaceRestoration):
class FaceRestorerCodeFormer(face_restoration_utils.CommonFaceRestoration):
def name(self):
return "CodeFormer"
def __init__(self, dirname):
self.net = None
self.face_helper = None
self.cmd_dir = dirname
def create_models(self):
if self.net is not None and self.face_helper is not None:
self.net.to(devices.device_codeformer)
return self.net, self.face_helper
model_paths = modelloader.load_models(model_path, model_url, self.cmd_dir, download_name='codeformer-v0.1.0.pth', ext_filter=['.pth'])
if len(model_paths) != 0:
ckpt_path = model_paths[0]
else:
print("Unable to load codeformer model.")
return None, None
net = net_class(dim_embd=512, codebook_size=1024, n_head=8, n_layers=9, connect_list=['32', '64', '128', '256']).to(devices.device_codeformer)
checkpoint = torch.load(ckpt_path)['params_ema']
net.load_state_dict(checkpoint)
net.eval()
if hasattr(retinaface, 'device'):
retinaface.device = devices.device_codeformer
face_helper = FaceRestoreHelper(1, face_size=512, crop_ratio=(1, 1), det_model='retinaface_resnet50', save_ext='png', use_parse=True, device=devices.device_codeformer)
self.net = net
self.face_helper = face_helper
return net, face_helper
def send_model_to(self, device):
self.net.to(device)
self.face_helper.face_det.to(device)
self.face_helper.face_parse.to(device)
def restore(self, np_image, w=None):
np_image = np_image[:, :, ::-1]
def load_net(self) -> torch.Module:
for model_path in modelloader.load_models(
model_path=self.model_path,
model_url=model_url,
command_path=self.model_path,
download_name=model_download_name,
ext_filter=['.pth'],
):
return modelloader.load_spandrel_model(
model_path,
device=devices.device_codeformer,
expected_architecture='CodeFormer',
).model
raise ValueError("No codeformer model found")
original_resolution = np_image.shape[0:2]
def get_device(self):
return devices.device_codeformer
self.create_models()
if self.net is None or self.face_helper is None:
return np_image
def restore(self, np_image, w: float | None = None):
if w is None:
w = getattr(shared.opts, "code_former_weight", 0.5)
self.send_model_to(devices.device_codeformer)
def restore_face(cropped_face_t):
assert self.net is not None
return self.net(cropped_face_t, w=w, adain=True)[0]
self.face_helper.clean_all()
self.face_helper.read_image(np_image)
self.face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5)
self.face_helper.align_warp_face()
return self.restore_with_helper(np_image, restore_face)
for cropped_face in self.face_helper.cropped_faces:
cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
cropped_face_t = cropped_face_t.unsqueeze(0).to(devices.device_codeformer)
try:
with torch.no_grad():
output = self.net(cropped_face_t, w=w if w is not None else shared.opts.code_former_weight, adain=True)[0]
restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
del output
devices.torch_gc()
except Exception:
errors.report('Failed inference for CodeFormer', exc_info=True)
restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1))
restored_face = restored_face.astype('uint8')
self.face_helper.add_restored_face(restored_face)
self.face_helper.get_inverse_affine(None)
restored_img = self.face_helper.paste_faces_to_input_image()
restored_img = restored_img[:, :, ::-1]
if original_resolution != restored_img.shape[0:2]:
restored_img = cv2.resize(restored_img, (0, 0), fx=original_resolution[1]/restored_img.shape[1], fy=original_resolution[0]/restored_img.shape[0], interpolation=cv2.INTER_LINEAR)
self.face_helper.clean_all()
if shared.opts.face_restoration_unload:
self.send_model_to(devices.cpu)
return restored_img
def setup_model(dirname: str) -> None:
global codeformer
try:
codeformer = FaceRestorerCodeFormer(dirname)
shared.face_restorers.append(codeformer)
except Exception:
errors.report("Error setting up CodeFormer", exc_info=True)
# sys.path = stored_sys_path
This diff is collapsed.
......@@ -107,8 +107,8 @@ def check_versions():
import torch
import gradio
expected_torch_version = "2.0.0"
expected_xformers_version = "0.0.20"
expected_torch_version = "2.1.2"
expected_xformers_version = "0.0.23.post1"
expected_gradio_version = "3.41.2"
if version.parse(torch.__version__) < version.parse(expected_torch_version):
......
This diff is collapsed.
This diff is collapsed.
......@@ -32,7 +32,8 @@ class ExtensionMetadata:
self.config = configparser.ConfigParser()
filepath = os.path.join(path, self.filename)
if os.path.isfile(filepath):
# `self.config.read()` will quietly swallow OSErrors (which FileNotFoundError is),
# so no need to check whether the file exists beforehand.
try:
self.config.read(filepath)
except Exception:
......
......@@ -206,7 +206,7 @@ def parse_prompts(prompts):
return res, extra_data
def get_user_metadata(filename):
def get_user_metadata(filename, lister=None):
if filename is None:
return {}
......@@ -215,7 +215,8 @@ def get_user_metadata(filename):
metadata = {}
try:
if os.path.isfile(metadata_filename):
exists = lister.exists(metadata_filename) if lister else os.path.exists(metadata_filename)
if exists:
with open(metadata_filename, "r", encoding="utf8") as file:
metadata = json.load(file)
except Exception as e:
......
This diff is collapsed.
This diff is collapsed.
import os
import sys
from modules import modelloader, devices
from modules.shared import opts
from modules.upscaler import Upscaler, UpscalerData
from modules.upscaler_utils import upscale_with_model
class UpscalerHAT(Upscaler):
def __init__(self, dirname):
self.name = "HAT"
self.scalers = []
self.user_path = dirname
super().__init__()
for file in self.find_models(ext_filter=[".pt", ".pth"]):
name = modelloader.friendly_name(file)
scale = 4 # TODO: scale might not be 4, but we can't know without loading the model
scaler_data = UpscalerData(name, file, upscaler=self, scale=scale)
self.scalers.append(scaler_data)
def do_upscale(self, img, selected_model):
try:
model = self.load_model(selected_model)
except Exception as e:
print(f"Unable to load HAT model {selected_model}: {e}", file=sys.stderr)
return img
model.to(devices.device_esrgan) # TODO: should probably be device_hat
return upscale_with_model(
model,
img,
tile_size=opts.ESRGAN_tile, # TODO: should probably be HAT_tile
tile_overlap=opts.ESRGAN_tile_overlap, # TODO: should probably be HAT_tile_overlap
)
def load_model(self, path: str):
if not os.path.isfile(path):
raise FileNotFoundError(f"Model file {path} not found")
return modelloader.load_spandrel_model(
path,
device=devices.device_esrgan, # TODO: should probably be device_hat
expected_architecture='HAT',
)
......@@ -61,12 +61,17 @@ def image_grid(imgs, batch_size=1, rows=None):
return grid
Grid = namedtuple("Grid", ["tiles", "tile_w", "tile_h", "image_w", "image_h", "overlap"])
class Grid(namedtuple("_Grid", ["tiles", "tile_w", "tile_h", "image_w", "image_h", "overlap"])):
@property
def tile_count(self) -> int:
"""
The total number of tiles in the grid.
"""
return sum(len(row[2]) for row in self.tiles)
def split_grid(image, tile_w=512, tile_h=512, overlap=64):
w = image.width
h = image.height
def split_grid(image: Image.Image, tile_w: int = 512, tile_h: int = 512, overlap: int = 64) -> Grid:
w, h = image.size
non_overlap_width = tile_w - overlap
non_overlap_height = tile_h - overlap
......@@ -791,3 +796,4 @@ def flatten(img, bgcolor):
img = background
return img.convert('RGB')
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
......@@ -177,6 +177,8 @@ def configure_opts_onchange():
shared.opts.onchange("temp_dir", ui_tempdir.on_tmpdir_changed)
shared.opts.onchange("gradio_theme", shared.reload_gradio_theme)
shared.opts.onchange("cross_attention_optimization", wrap_queued_call(lambda: sd_hijack.model_hijack.redo_hijack(shared.sd_model)), call=False)
shared.opts.onchange("fp8_storage", wrap_queued_call(lambda: sd_models.reload_model_weights()), call=False)
shared.opts.onchange("cache_fp16_weight", wrap_queued_call(lambda: sd_models.reload_model_weights(forced_reload=True)), call=False)
startup_timer.record("opts onchange")
......
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment