Commit ba6cb51b authored by kurumuz's avatar kurumuz

fix vector prior

parent ccfcd437
...@@ -169,7 +169,7 @@ class StableDiffusionModel(nn.Module): ...@@ -169,7 +169,7 @@ class StableDiffusionModel(nn.Module):
'k_lms': K.sampling.sample_lms, 'k_lms': K.sampling.sample_lms,
} }
if config.prior_path: if config.prior_path:
self.prior = VectorAdjustPrior.load_model(config.prior_path, hidden_size=model_config['hidden_size']) self.prior = VectorAdjustPrior.load_model(config.prior_path)
def from_folder(self, folder): def from_folder(self, folder):
folder = Path(folder) folder = Path(folder)
...@@ -212,10 +212,10 @@ class StableDiffusionModel(nn.Module): ...@@ -212,10 +212,10 @@ class StableDiffusionModel(nn.Module):
request.sampler = "k_lms" request.sampler = "k_lms"
if request.sampler == "ddim": if request.sampler == "ddim":
request.sampler = "ddim_img2img" request.sampler = "ddim_img2img"
self.ddim.make_schedule(ddim_num_steps=request.steps, ddim_eta=request.ddim_eta, verbose=False) self.ddim.make_schedule(ddim_num_steps=request.steps, ddim_eta=request.ddim_eta, verbose=False)
start_code = encode_image(request.image, self.model.first_stage_model).to(self.device) start_code = encode_image(request.image, self.model.first_stage_model).to(self.device)
start_code = self.model.get_first_stage_encoding(start_code) start_code = self.model.get_first_stage_encoding(start_code)
print(start_code.shape)
start_code = start_code + (torch.randn_like(start_code) * request.noise) start_code = start_code + (torch.randn_like(start_code) * request.noise)
t_enc = int(request.strength * request.steps) t_enc = int(request.strength * request.steps)
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment