Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Sign in / Register
Toggle navigation
M
miniaudio
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Locked Files
Issues
0
Issues
0
List
Boards
Labels
Service Desk
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Security & Compliance
Security & Compliance
Dependency List
License Compliance
Packages
Packages
List
Container Registry
Analytics
Analytics
CI / CD
Code Review
Insights
Issues
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
MyCard
miniaudio
Commits
b1967397
Commit
b1967397
authored
Nov 19, 2022
by
David Reid
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Optimization pass on ma_gainer.
parent
45d6d5a2
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
114 additions
and
0 deletions
+114
-0
miniaudio.h
miniaudio.h
+114
-0
No files found.
miniaudio.h
View file @
b1967397
...
@@ -47850,11 +47850,124 @@ MA_API ma_result ma_gainer_process_pcm_frames(ma_gainer* pGainer, void* pFramesO
...
@@ -47850,11 +47850,124 @@ MA_API ma_result ma_gainer_process_pcm_frames(ma_gainer* pGainer, void* pFramesO
ma_uint32 iChannel;
ma_uint32 iChannel;
float* pFramesOutF32 = (float*)pFramesOut;
float* pFramesOutF32 = (float*)pFramesOut;
const float* pFramesInF32 = (const float*)pFramesIn;
const float* pFramesInF32 = (const float*)pFramesIn;
ma_uint64 interpolatedFrameCount;
if (pGainer == NULL) {
if (pGainer == NULL) {
return MA_INVALID_ARGS;
return MA_INVALID_ARGS;
}
}
/*
We don't necessarily need to apply a linear interpolation for the entire frameCount frames. When
linear interpolation is not needed we can do a simple volume adjustment which will be more
efficient than a lerp with an alpha value of 1.
To do this, all we need to do is determine how many frames need to have a lerp applied. Then we
just process that number of frames with linear interpolation. After that we run on an optimized
path which just applies the new gains without a lerp.
*/
if (pGainer->t >= pGainer->config.smoothTimeInFrames) {
interpolatedFrameCount = 0;
} else {
interpolatedFrameCount = pGainer->t - pGainer->config.smoothTimeInFrames;
if (interpolatedFrameCount > frameCount) {
interpolatedFrameCount = frameCount;
}
}
/*
Start off with our interpolated frames. When we do this, we'll adjust frameCount and our pointers
so that the fast path can work naturally without consideration of the interpolated path.
*/
if (interpolatedFrameCount > 0) {
/* We can allow the input and output buffers to be null in which case we'll just update the internal timer. */
if (pFramesOut != NULL && pFramesIn != NULL) {
/*
All we're really doing here is moving the old gains towards the new gains. We don't want to
be modifying the gains inside the ma_gainer object because that will break things. Instead
we can make a copy here on the stack. For extreme channel counts we can fall back to a slower
implementation which just uses a standard lerp.
*/
float a = (float)pGainer->t / pGainer->config.smoothTimeInFrames;
float d = 1.0f / pGainer->config.smoothTimeInFrames;
if (pGainer->config.channels <= 32) {
float pRunningGain[32];
float pRunningGainDelta[32]; /* Could this be heap-allocated as part of the ma_gainer object? */
/* Initialize the running gain. */
for (iChannel = 0; iChannel < pGainer->config.channels; iChannel += 1) {
float t = pGainer->pOldGains[iChannel] - pGainer->pNewGains[iChannel];
pRunningGainDelta[iChannel] = t * d;
pRunningGain[iChannel] = pGainer->pOldGains[iChannel] + (t * a);
}
iFrame = 0;
/* Optimized loop unroll for stereo. This is mostly just experimenting with some SIMD ideas. It's not necessarily final. */
if (pGainer->config.channels == 2) {
ma_uint64 unrolledLoopCount = interpolatedFrameCount >> 1;
/* Expand some arrays so we can have a clean 4x SIMD operation in the loop. */
pRunningGainDelta[2] = pRunningGainDelta[0];
pRunningGainDelta[3] = pRunningGainDelta[1];
pRunningGain[2] = pRunningGain[0] + pRunningGainDelta[0];
pRunningGain[3] = pRunningGain[1] + pRunningGainDelta[1];
for (; iFrame < unrolledLoopCount; iFrame += 1) {
pFramesOutF32[iFrame*4 + 0] = pFramesInF32[iFrame*4 + 0] * pRunningGain[0];
pFramesOutF32[iFrame*4 + 1] = pFramesInF32[iFrame*4 + 1] * pRunningGain[1];
pFramesOutF32[iFrame*4 + 2] = pFramesInF32[iFrame*4 + 2] * pRunningGain[2];
pFramesOutF32[iFrame*4 + 3] = pFramesInF32[iFrame*4 + 3] * pRunningGain[3];
/* Move the running gain forward towards the new gain. */
pRunningGain[0] += pRunningGainDelta[0];
pRunningGain[1] += pRunningGainDelta[1];
pRunningGain[2] += pRunningGainDelta[2];
pRunningGain[3] += pRunningGainDelta[3];
}
iFrame = unrolledLoopCount << 1;
}
for (; iFrame < interpolatedFrameCount; iFrame += 1) {
for (iChannel = 0; iChannel < pGainer->config.channels; iChannel += 1) {
pFramesOutF32[iFrame*pGainer->config.channels + iChannel] = pFramesInF32[iFrame*pGainer->config.channels + iChannel] * pRunningGain[iChannel];
pRunningGain[iChannel] += pRunningGainDelta[iChannel];
}
}
} else {
/* Slower path for extreme channel counts where we can't fit enough on the stack. We could also move this to the heap as part of the ma_gainer object which might even be better since it'll only be updated when the gains actually change. */
for (iFrame = 0; iFrame < interpolatedFrameCount; iFrame += 1) {
for (iChannel = 0; iChannel < pGainer->config.channels; iChannel += 1) {
pFramesOutF32[iFrame*pGainer->config.channels + iChannel] = pFramesInF32[iFrame*pGainer->config.channels + iChannel] * ma_mix_f32_fast(pGainer->pOldGains[iChannel], pGainer->pNewGains[iChannel], a);
}
a += d;
}
}
}
/* Make sure the timer is updated. */
pGainer->t = (ma_uint32)ma_min(pGainer->t + interpolatedFrameCount, pGainer->config.smoothTimeInFrames);
/* Adjust our arguments so the next part can work normally. */
frameCount -= interpolatedFrameCount;
pFramesOut = ma_offset_ptr(pFramesOut, interpolatedFrameCount * sizeof(float));
pFramesIn = ma_offset_ptr(pFramesIn, interpolatedFrameCount * sizeof(float));
}
/* All we need to do here is apply the new gains using an optimized path. */
if (pFramesOut != NULL && pFramesIn != NULL) {
ma_copy_and_apply_volume_factor_per_channel_f32(pFramesOut, pFramesIn, frameCount, pGainer->config.channels, pGainer->pNewGains);
}
/* Now that some frames have been processed we need to make sure future changes to the gain are interpolated. */
if (pGainer->t == (ma_uint32)-1) {
pGainer->t = pGainer->config.smoothTimeInFrames;
}
#if 0
if (pGainer->t >= pGainer->config.smoothTimeInFrames) {
if (pGainer->t >= pGainer->config.smoothTimeInFrames) {
/* Fast path. No gain calculation required. */
/* Fast path. No gain calculation required. */
ma_copy_and_apply_volume_factor_per_channel_f32(pFramesOutF32, pFramesInF32, frameCount, pGainer->config.channels, pGainer->pNewGains);
ma_copy_and_apply_volume_factor_per_channel_f32(pFramesOutF32, pFramesInF32, frameCount, pGainer->config.channels, pGainer->pNewGains);
...
@@ -47903,6 +48016,7 @@ MA_API ma_result ma_gainer_process_pcm_frames(ma_gainer* pGainer, void* pFramesO
...
@@ -47903,6 +48016,7 @@ MA_API ma_result ma_gainer_process_pcm_frames(ma_gainer* pGainer, void* pFramesO
}
}
#endif
#endif
}
}
#endif
return MA_SUCCESS;
return MA_SUCCESS;
}
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment