#define MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_STREAM 0x00000001 /* When set, does not load the entire data source in memory. Disk I/O will happen on job threads. */
#define MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_DECODE 0x00000002 /* Decode data before storing in memory. When set, decoding is done at the resource manager level rather than the mixing thread. Results in faster mixing, but higher memory usage. */
#define MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_ASYNC 0x00000004 /* When set, the resource manager will load the data source asynchronously. */
#define MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_WAIT_INIT 0x00000008 /* When set, waits for initialization of the underlying data source before returning from ma_resource_manager_data_source_init(). */
typedef enum
{
MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_STREAM = 0x00000001, /* When set, does not load the entire data source in memory. Disk I/O will happen on job threads. */
MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_DECODE = 0x00000002, /* Decode data before storing in memory. When set, decoding is done at the resource manager level rather than the mixing thread. Results in faster mixing, but higher memory usage. */
MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_ASYNC = 0x00000004, /* When set, the resource manager will load the data source asynchronously. */
MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_WAIT_INIT = 0x00000008 /* When set, waits for initialization of the underlying data source before returning from ma_resource_manager_data_source_init(). */
#define MA_RESOURCE_MANAGER_JOB_CUSTOM 0x00000100 /* Number your custom job codes as (MA_RESOURCE_MANAGER_JOB_CUSTOM + 0), (MA_RESOURCE_MANAGER_JOB_CUSTOM + 1), etc. */
MA_RESOURCE_MANAGER_JOB_CUSTOM = 0x00000100 /* Number your custom job codes as (MA_RESOURCE_MANAGER_JOB_CUSTOM + 0), (MA_RESOURCE_MANAGER_JOB_CUSTOM + 1), etc. */
} ma_resource_manager_job_type;
/*
...
...
@@ -9415,7 +9424,10 @@ ma_resource_manager_job_queue_post(). ma_resource_manager_job_queue_next() will
This flag should always be used for platforms that do not support multithreading.
/* Mutable via multiple threads. Must be used atomically. The weird ordering here is for packing reasons. */
MA_ATOMIC(1, ma_uint8) inputNodeInputBusIndex; /* The index of the input bus on the input. Required for detaching. */
MA_ATOMIC(4, ma_uint32) flags; /* Some state flags for tracking the read state of the output buffer. */
MA_ATOMIC(4, ma_uint32) flags; /* Some state flags for tracking the read state of the output buffer. A combination of MA_NODE_OUTPUT_BUS_FLAG_*. */
MA_ATOMIC(4, ma_uint32) refCount; /* Reference count for some thread-safety when detaching. */
MA_ATOMIC(4, ma_bool32) isAttached; /* This is used to prevent iteration of nodes that are in the middle of being detached. Used for thread safety. */
MA_ATOMIC(4, ma_spinlock) lock; /* Unfortunate lock, but significantly simplifies the implementation. Required for thread-safe attaching and detaching. */
#define MA_SOUND_FLAG_NO_DEFAULT_ATTACHMENT 0x00000010 /* Do not attach to the endpoint by default. Useful for when setting up nodes in a complex graph system. */
#define MA_SOUND_FLAG_NO_PITCH 0x00000020 /* Disable pitch shifting with ma_sound_set_pitch() and ma_sound_group_set_pitch(). This is an optimization. */
MA_SOUND_FLAG_NO_DEFAULT_ATTACHMENT = 0x00000010, /* Do not attach to the endpoint by default. Useful for when setting up nodes in a complex graph system. */
MA_SOUND_FLAG_NO_PITCH = 0x00000020, /* Disable pitch shifting with ma_sound_set_pitch() and ma_sound_group_set_pitch(). This is an optimization. */