Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Sign in / Register
Toggle navigation
S
Stable Diffusion Webui
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Locked Files
Issues
0
Issues
0
List
Boards
Labels
Service Desk
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Security & Compliance
Security & Compliance
Dependency List
License Compliance
Packages
Packages
List
Container Registry
Analytics
Analytics
CI / CD
Code Review
Insights
Issues
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
novelai-storage
Stable Diffusion Webui
Commits
d2c97fc3
You need to sign in or sign up before continuing.
Commit
d2c97fc3
authored
Nov 23, 2022
by
flamelaw
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
fix dropout, implement train/eval mode
parent
89d8ecff
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
18 additions
and
6 deletions
+18
-6
modules/hypernetworks/hypernetwork.py
modules/hypernetworks/hypernetwork.py
+18
-6
No files found.
modules/hypernetworks/hypernetwork.py
View file @
d2c97fc3
...
@@ -154,16 +154,28 @@ class Hypernetwork:
...
@@ -154,16 +154,28 @@ class Hypernetwork:
HypernetworkModule
(
size
,
None
,
self
.
layer_structure
,
self
.
activation_func
,
self
.
weight_init
,
HypernetworkModule
(
size
,
None
,
self
.
layer_structure
,
self
.
activation_func
,
self
.
weight_init
,
self
.
add_layer_norm
,
self
.
use_dropout
,
self
.
activate_output
,
last_layer_dropout
=
self
.
last_layer_dropout
),
self
.
add_layer_norm
,
self
.
use_dropout
,
self
.
activate_output
,
last_layer_dropout
=
self
.
last_layer_dropout
),
)
)
self
.
eval_mode
()
def
weights
(
self
):
def
weights
(
self
):
res
=
[]
res
=
[]
for
k
,
layers
in
self
.
layers
.
items
():
for
layer
in
layers
:
res
+=
layer
.
parameters
()
return
res
def
train_mode
(
self
):
for
k
,
layers
in
self
.
layers
.
items
():
for
k
,
layers
in
self
.
layers
.
items
():
for
layer
in
layers
:
for
layer
in
layers
:
layer
.
train
()
layer
.
train
()
res
+=
layer
.
trainables
()
for
param
in
layer
.
parameters
():
param
.
requires_grad
=
True
return
res
def
eval_mode
(
self
):
for
k
,
layers
in
self
.
layers
.
items
():
for
layer
in
layers
:
layer
.
eval
()
for
param
in
layer
.
parameters
():
param
.
requires_grad
=
False
def
save
(
self
,
filename
):
def
save
(
self
,
filename
):
state_dict
=
{}
state_dict
=
{}
...
@@ -426,8 +438,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step,
...
@@ -426,8 +438,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step,
shared
.
sd_model
.
first_stage_model
.
to
(
devices
.
cpu
)
shared
.
sd_model
.
first_stage_model
.
to
(
devices
.
cpu
)
weights
=
hypernetwork
.
weights
()
weights
=
hypernetwork
.
weights
()
for
weight
in
weights
:
hypernetwork
.
train_mode
()
weight
.
requires_grad
=
True
# Here we use optimizer from saved HN, or we can specify as UI option.
# Here we use optimizer from saved HN, or we can specify as UI option.
if
hypernetwork
.
optimizer_name
in
optimizer_dict
:
if
hypernetwork
.
optimizer_name
in
optimizer_dict
:
...
@@ -538,7 +549,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step,
...
@@ -538,7 +549,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step,
if
images_dir
is
not
None
and
steps_done
%
create_image_every
==
0
:
if
images_dir
is
not
None
and
steps_done
%
create_image_every
==
0
:
forced_filename
=
f
'{hypernetwork_name}-{steps_done}'
forced_filename
=
f
'{hypernetwork_name}-{steps_done}'
last_saved_image
=
os
.
path
.
join
(
images_dir
,
forced_filename
)
last_saved_image
=
os
.
path
.
join
(
images_dir
,
forced_filename
)
hypernetwork
.
eval_mode
()
shared
.
sd_model
.
cond_stage_model
.
to
(
devices
.
device
)
shared
.
sd_model
.
cond_stage_model
.
to
(
devices
.
device
)
shared
.
sd_model
.
first_stage_model
.
to
(
devices
.
device
)
shared
.
sd_model
.
first_stage_model
.
to
(
devices
.
device
)
...
@@ -571,7 +582,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step,
...
@@ -571,7 +582,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step,
if
unload
:
if
unload
:
shared
.
sd_model
.
cond_stage_model
.
to
(
devices
.
cpu
)
shared
.
sd_model
.
cond_stage_model
.
to
(
devices
.
cpu
)
shared
.
sd_model
.
first_stage_model
.
to
(
devices
.
cpu
)
shared
.
sd_model
.
first_stage_model
.
to
(
devices
.
cpu
)
hypernetwork
.
train_mode
()
if
image
is
not
None
:
if
image
is
not
None
:
shared
.
state
.
current_image
=
image
shared
.
state
.
current_image
=
image
last_saved_image
,
last_text_info
=
images
.
save_image
(
image
,
images_dir
,
""
,
p
.
seed
,
p
.
prompt
,
shared
.
opts
.
samples_format
,
processed
.
infotexts
[
0
],
p
=
p
,
forced_filename
=
forced_filename
,
save_to_dirs
=
False
)
last_saved_image
,
last_text_info
=
images
.
save_image
(
image
,
images_dir
,
""
,
p
.
seed
,
p
.
prompt
,
shared
.
opts
.
samples_format
,
processed
.
infotexts
[
0
],
p
=
p
,
forced_filename
=
forced_filename
,
save_to_dirs
=
False
)
...
@@ -593,6 +604,7 @@ Last saved image: {html.escape(last_saved_image)}<br/>
...
@@ -593,6 +604,7 @@ Last saved image: {html.escape(last_saved_image)}<br/>
finally
:
finally
:
pbar
.
leave
=
False
pbar
.
leave
=
False
pbar
.
close
()
pbar
.
close
()
hypernetwork
.
eval_mode
()
#report_statistics(loss_dict)
#report_statistics(loss_dict)
filename
=
os
.
path
.
join
(
shared
.
cmd_opts
.
hypernetwork_dir
,
f
'{hypernetwork_name}.pt'
)
filename
=
os
.
path
.
join
(
shared
.
cmd_opts
.
hypernetwork_dir
,
f
'{hypernetwork_name}.pt'
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment