Add FP32 fallback support on torch.nn.functional.interpolate
This tries to execute interpolate with FP32 if it failed. Background is that on some environment such as Mx chip MacOS devices, we get error as follows: ``` "torch/nn/functional.py", line 3931, in interpolate return torch._C._nn.upsample_nearest2d(input, output_size, scale_factors) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ RuntimeError: "upsample_nearest2d_channels_last" not implemented for 'Half' ``` In this case, ```--no-half``` doesn't help to solve. Therefore this commits add the FP32 fallback execution to solve it. Note that the ```upsample_nearest2d``` is called from ```torch.nn.functional.interpolate```. And the fallback for torch.nn.functional.interpolate is necessary at ```modules/sd_vae_approx.py``` 's ```VAEApprox.forward``` ```repositories/stable-diffusion-stability-ai/ldm/modules/diffusionmodules/openaimodel.py``` 's ```Upsample.forward```
Showing
Please register or sign in to comment