Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Sign in / Register
Toggle navigation
S
Stable Diffusion Webui
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Locked Files
Issues
0
Issues
0
List
Boards
Labels
Service Desk
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Security & Compliance
Security & Compliance
Dependency List
License Compliance
Packages
Packages
List
Container Registry
Analytics
Analytics
CI / CD
Code Review
Insights
Issues
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
novelai-storage
Stable Diffusion Webui
Commits
9eadc4f1
Commit
9eadc4f1
authored
Dec 02, 2023
by
AUTOMATIC1111
Committed by
GitHub
Dec 02, 2023
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #14121 from AUTOMATIC1111/fix-Auto-focal-point-crop-for-opencv-4.8.x
Fix auto focal point crop for opencv >= 4.8
parents
97c8e7e0
d608926f
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
124 additions
and
119 deletions
+124
-119
modules/textual_inversion/autocrop.py
modules/textual_inversion/autocrop.py
+122
-117
modules/textual_inversion/preprocess.py
modules/textual_inversion/preprocess.py
+2
-2
No files found.
modules/textual_inversion/autocrop.py
View file @
9eadc4f1
...
...
@@ -3,6 +3,8 @@ import requests
import
os
import
numpy
as
np
from
PIL
import
ImageDraw
from
modules
import
paths_internal
from
pkg_resources
import
parse_version
GREEN
=
"#0F0"
BLUE
=
"#00F"
...
...
@@ -25,7 +27,6 @@ def crop_image(im, settings):
elif
is_portrait
(
settings
.
crop_width
,
settings
.
crop_height
):
scale_by
=
settings
.
crop_height
/
im
.
height
im
=
im
.
resize
((
int
(
im
.
width
*
scale_by
),
int
(
im
.
height
*
scale_by
)))
im_debug
=
im
.
copy
()
...
...
@@ -69,6 +70,7 @@ def crop_image(im, settings):
return
results
def
focal_point
(
im
,
settings
):
corner_points
=
image_corner_points
(
im
,
settings
)
if
settings
.
corner_points_weight
>
0
else
[]
entropy_points
=
image_entropy_points
(
im
,
settings
)
if
settings
.
entropy_points_weight
>
0
else
[]
...
...
@@ -110,7 +112,7 @@ def focal_point(im, settings):
if
corner_centroid
is
not
None
:
color
=
BLUE
box
=
corner_centroid
.
bounding
(
max_size
*
corner_centroid
.
weight
)
d
.
text
((
box
[
0
],
box
[
1
]
-
15
),
f
"Edge: {corner_centroid.weight:.02f}"
,
fill
=
color
)
d
.
text
((
box
[
0
],
box
[
1
]
-
15
),
f
"Edge: {corner_centroid.weight:.02f}"
,
fill
=
color
)
d
.
ellipse
(
box
,
outline
=
color
)
if
len
(
corner_points
)
>
1
:
for
f
in
corner_points
:
...
...
@@ -118,7 +120,7 @@ def focal_point(im, settings):
if
entropy_centroid
is
not
None
:
color
=
"#ff0"
box
=
entropy_centroid
.
bounding
(
max_size
*
entropy_centroid
.
weight
)
d
.
text
((
box
[
0
],
box
[
1
]
-
15
),
f
"Entropy: {entropy_centroid.weight:.02f}"
,
fill
=
color
)
d
.
text
((
box
[
0
],
box
[
1
]
-
15
),
f
"Entropy: {entropy_centroid.weight:.02f}"
,
fill
=
color
)
d
.
ellipse
(
box
,
outline
=
color
)
if
len
(
entropy_points
)
>
1
:
for
f
in
entropy_points
:
...
...
@@ -126,7 +128,7 @@ def focal_point(im, settings):
if
face_centroid
is
not
None
:
color
=
RED
box
=
face_centroid
.
bounding
(
max_size
*
face_centroid
.
weight
)
d
.
text
((
box
[
0
],
box
[
1
]
-
15
),
f
"Face: {face_centroid.weight:.02f}"
,
fill
=
color
)
d
.
text
((
box
[
0
],
box
[
1
]
-
15
),
f
"Face: {face_centroid.weight:.02f}"
,
fill
=
color
)
d
.
ellipse
(
box
,
outline
=
color
)
if
len
(
face_points
)
>
1
:
for
f
in
face_points
:
...
...
@@ -159,8 +161,8 @@ def image_face_points(im, settings):
PointOfInterest
(
int
(
x
+
(
w
*
0.5
)),
# face focus left/right is center
int
(
y
+
(
h
*
0.33
)),
# face focus up/down is close to the top of the head
size
=
w
,
weight
=
1
/
len
(
faces
[
1
])
size
=
w
,
weight
=
1
/
len
(
faces
[
1
])
)
)
return
results
...
...
@@ -169,27 +171,29 @@ def image_face_points(im, settings):
gray
=
cv2
.
cvtColor
(
np_im
,
cv2
.
COLOR_BGR2GRAY
)
tries
=
[
[
f
'{cv2.data.haarcascades}haarcascade_eye.xml'
,
0.01
],
[
f
'{cv2.data.haarcascades}haarcascade_frontalface_default.xml'
,
0.05
],
[
f
'{cv2.data.haarcascades}haarcascade_profileface.xml'
,
0.05
],
[
f
'{cv2.data.haarcascades}haarcascade_frontalface_alt.xml'
,
0.05
],
[
f
'{cv2.data.haarcascades}haarcascade_frontalface_alt2.xml'
,
0.05
],
[
f
'{cv2.data.haarcascades}haarcascade_frontalface_alt_tree.xml'
,
0.05
],
[
f
'{cv2.data.haarcascades}haarcascade_eye_tree_eyeglasses.xml'
,
0.05
],
[
f
'{cv2.data.haarcascades}haarcascade_upperbody.xml'
,
0.05
]
[
f
'{cv2.data.haarcascades}haarcascade_eye.xml'
,
0.01
],
[
f
'{cv2.data.haarcascades}haarcascade_frontalface_default.xml'
,
0.05
],
[
f
'{cv2.data.haarcascades}haarcascade_profileface.xml'
,
0.05
],
[
f
'{cv2.data.haarcascades}haarcascade_frontalface_alt.xml'
,
0.05
],
[
f
'{cv2.data.haarcascades}haarcascade_frontalface_alt2.xml'
,
0.05
],
[
f
'{cv2.data.haarcascades}haarcascade_frontalface_alt_tree.xml'
,
0.05
],
[
f
'{cv2.data.haarcascades}haarcascade_eye_tree_eyeglasses.xml'
,
0.05
],
[
f
'{cv2.data.haarcascades}haarcascade_upperbody.xml'
,
0.05
]
]
for
t
in
tries
:
classifier
=
cv2
.
CascadeClassifier
(
t
[
0
])
minsize
=
int
(
min
(
im
.
width
,
im
.
height
)
*
t
[
1
])
# at least N percent of the smallest side
try
:
faces
=
classifier
.
detectMultiScale
(
gray
,
scaleFactor
=
1.1
,
minNeighbors
=
7
,
minSize
=
(
minsize
,
minsize
),
flags
=
cv2
.
CASCADE_SCALE_IMAGE
)
minNeighbors
=
7
,
minSize
=
(
minsize
,
minsize
),
flags
=
cv2
.
CASCADE_SCALE_IMAGE
)
except
Exception
:
continue
if
faces
:
rects
=
[[
f
[
0
],
f
[
1
],
f
[
0
]
+
f
[
2
],
f
[
1
]
+
f
[
3
]]
for
f
in
faces
]
return
[
PointOfInterest
((
r
[
0
]
+
r
[
2
])
//
2
,
(
r
[
1
]
+
r
[
3
])
//
2
,
size
=
abs
(
r
[
0
]
-
r
[
2
]),
weight
=
1
/
len
(
rects
))
for
r
in
rects
]
return
[
PointOfInterest
((
r
[
0
]
+
r
[
2
])
//
2
,
(
r
[
1
]
+
r
[
3
])
//
2
,
size
=
abs
(
r
[
0
]
-
r
[
2
]),
weight
=
1
/
len
(
rects
))
for
r
in
rects
]
return
[]
...
...
@@ -198,7 +202,7 @@ def image_corner_points(im, settings):
# naive attempt at preventing focal points from collecting at watermarks near the bottom
gd
=
ImageDraw
.
Draw
(
grayscale
)
gd
.
rectangle
([
0
,
im
.
height
*
.9
,
im
.
width
,
im
.
height
],
fill
=
"#999"
)
gd
.
rectangle
([
0
,
im
.
height
*
.9
,
im
.
width
,
im
.
height
],
fill
=
"#999"
)
np_im
=
np
.
array
(
grayscale
)
...
...
@@ -206,7 +210,7 @@ def image_corner_points(im, settings):
np_im
,
maxCorners
=
100
,
qualityLevel
=
0.04
,
minDistance
=
min
(
grayscale
.
width
,
grayscale
.
height
)
*
0.06
,
minDistance
=
min
(
grayscale
.
width
,
grayscale
.
height
)
*
0.06
,
useHarrisDetector
=
False
,
)
...
...
@@ -216,7 +220,7 @@ def image_corner_points(im, settings):
focal_points
=
[]
for
point
in
points
:
x
,
y
=
point
.
ravel
()
focal_points
.
append
(
PointOfInterest
(
x
,
y
,
size
=
4
,
weight
=
1
/
len
(
points
)))
focal_points
.
append
(
PointOfInterest
(
x
,
y
,
size
=
4
,
weight
=
1
/
len
(
points
)))
return
focal_points
...
...
@@ -247,8 +251,8 @@ def image_entropy_points(im, settings):
crop_current
[
move_idx
[
0
]]
+=
4
crop_current
[
move_idx
[
1
]]
+=
4
x_mid
=
int
(
crop_best
[
0
]
+
settings
.
crop_width
/
2
)
y_mid
=
int
(
crop_best
[
1
]
+
settings
.
crop_height
/
2
)
x_mid
=
int
(
crop_best
[
0
]
+
settings
.
crop_width
/
2
)
y_mid
=
int
(
crop_best
[
1
]
+
settings
.
crop_height
/
2
)
return
[
PointOfInterest
(
x_mid
,
y_mid
,
size
=
25
,
weight
=
1.0
)]
...
...
@@ -294,22 +298,23 @@ def is_square(w, h):
return
w
==
h
def
download_and_cache_models
(
dirname
):
download_url
=
'https://github.com/opencv/opencv_zoo/blob/91fb0290f50896f38a0ab1e558b74b16bc009428/models/face_detection_yunet/face_detection_yunet_2022mar.onnx?raw=true'
model_file_name
=
'face_detection_yunet.onnx'
model_dir_opencv
=
os
.
path
.
join
(
paths_internal
.
models_path
,
'opencv'
)
if
parse_version
(
cv2
.
__version__
)
>=
parse_version
(
'4.8'
):
model_file_path
=
os
.
path
.
join
(
model_dir_opencv
,
'face_detection_yunet_2023mar.onnx'
)
model_url
=
'https://github.com/opencv/opencv_zoo/blob/b6e370b10f641879a87890d44e42173077154a05/models/face_detection_yunet/face_detection_yunet_2023mar.onnx?raw=true'
else
:
model_file_path
=
os
.
path
.
join
(
model_dir_opencv
,
'face_detection_yunet.onnx'
)
model_url
=
'https://github.com/opencv/opencv_zoo/blob/91fb0290f50896f38a0ab1e558b74b16bc009428/models/face_detection_yunet/face_detection_yunet_2022mar.onnx?raw=true'
os
.
makedirs
(
dirname
,
exist_ok
=
True
)
cache_file
=
os
.
path
.
join
(
dirname
,
model_file_name
)
if
not
os
.
path
.
exists
(
cache_file
):
print
(
f
"downloading face detection model from '{download_url}' to '{cache_file}'"
)
response
=
requests
.
get
(
download_url
)
with
open
(
cache_file
,
"wb"
)
as
f
:
def
download_and_cache_models
():
if
not
os
.
path
.
exists
(
model_file_path
):
os
.
makedirs
(
model_dir_opencv
,
exist_ok
=
True
)
print
(
f
"downloading face detection model from '{model_url}' to '{model_file_path}'"
)
response
=
requests
.
get
(
model_url
)
with
open
(
model_file_path
,
"wb"
)
as
f
:
f
.
write
(
response
.
content
)
if
os
.
path
.
exists
(
cache_file
):
return
cache_file
return
None
return
model_file_path
class
PointOfInterest
:
...
...
modules/textual_inversion/preprocess.py
View file @
9eadc4f1
...
...
@@ -3,7 +3,7 @@ from PIL import Image, ImageOps
import
math
import
tqdm
from
modules
import
paths
,
shared
,
images
,
deepbooru
from
modules
import
shared
,
images
,
deepbooru
from
modules.textual_inversion
import
autocrop
...
...
@@ -196,7 +196,7 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pre
dnn_model_path
=
None
try
:
dnn_model_path
=
autocrop
.
download_and_cache_models
(
os
.
path
.
join
(
paths
.
models_path
,
"opencv"
)
)
dnn_model_path
=
autocrop
.
download_and_cache_models
()
except
Exception
as
e
:
print
(
"Unable to load face detection model for auto crop selection. Falling back to lower quality haar method."
,
e
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment