Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Sign in / Register
Toggle navigation
S
Stable Diffusion Webui
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Locked Files
Issues
0
Issues
0
List
Boards
Labels
Service Desk
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Security & Compliance
Security & Compliance
Dependency List
License Compliance
Packages
Packages
List
Container Registry
Analytics
Analytics
CI / CD
Code Review
Insights
Issues
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
novelai-storage
Stable Diffusion Webui
Commits
8904e008
Commit
8904e008
authored
Mar 06, 2024
by
AUTOMATIC1111
Committed by
GitHub
Mar 06, 2024
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #15148 from continue-revolution/conrevo/fix-soft-inpaint
Fix Soft Inpaint for AnimateDiff
parents
ecd5fa9c
7d59b3b5
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
20 additions
and
6 deletions
+20
-6
extensions-builtin/soft-inpainting/scripts/soft_inpainting.py
...nsions-builtin/soft-inpainting/scripts/soft_inpainting.py
+20
-6
No files found.
extensions-builtin/soft-inpainting/scripts/soft_inpainting.py
View file @
8904e008
...
...
@@ -57,10 +57,14 @@ def latent_blend(settings, a, b, t):
# NOTE: We use inplace operations wherever possible.
if
len
(
t
.
shape
)
==
3
:
# [4][w][h] to [1][4][w][h]
t2
=
t
.
unsqueeze
(
0
)
# [4][w][h] to [1][1][w][h] - the [4] seem redundant.
t3
=
t
[
0
]
.
unsqueeze
(
0
)
.
unsqueeze
(
0
)
else
:
t2
=
t
t3
=
t
[:,
0
][:,
None
]
one_minus_t2
=
1
-
t2
one_minus_t3
=
1
-
t3
...
...
@@ -135,7 +139,10 @@ def apply_adaptive_masks(
from
PIL
import
Image
,
ImageOps
,
ImageFilter
# TODO: Bias the blending according to the latent mask, add adjustable parameter for bias control.
if
len
(
nmask
.
shape
)
==
3
:
latent_mask
=
nmask
[
0
]
.
float
()
else
:
latent_mask
=
nmask
[:,
0
]
.
float
()
# convert the original mask into a form we use to scale distances for thresholding
mask_scalar
=
1
-
(
torch
.
clamp
(
latent_mask
,
min
=
0
,
max
=
1
)
**
(
settings
.
mask_blend_scale
/
2
))
mask_scalar
=
(
0.5
*
(
1
-
settings
.
composite_mask_influence
)
...
...
@@ -157,7 +164,14 @@ def apply_adaptive_masks(
percentile_min
=
0.25
,
percentile_max
=
0.75
,
min_width
=
1
)
# The distance at which opacity of original decreases to 50%
if
len
(
mask_scalar
.
shape
)
==
3
:
if
mask_scalar
.
shape
[
0
]
>
i
:
half_weighted_distance
=
settings
.
composite_difference_threshold
*
mask_scalar
[
i
]
else
:
half_weighted_distance
=
settings
.
composite_difference_threshold
*
mask_scalar
[
0
]
else
:
half_weighted_distance
=
settings
.
composite_difference_threshold
*
mask_scalar
converted_mask
=
converted_mask
/
half_weighted_distance
converted_mask
=
1
/
(
1
+
converted_mask
**
settings
.
composite_difference_contrast
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment