Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Sign in / Register
Toggle navigation
S
Stable Diffusion Webui
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Locked Files
Issues
0
Issues
0
List
Boards
Labels
Service Desk
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Security & Compliance
Security & Compliance
Dependency List
License Compliance
Packages
Packages
List
Container Registry
Analytics
Analytics
CI / CD
Code Review
Insights
Issues
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
novelai-storage
Stable Diffusion Webui
Commits
8839b372
Commit
8839b372
authored
Jan 04, 2023
by
AUTOMATIC1111
Committed by
GitHub
Jan 04, 2023
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #3490 from Nerogar/inpaint_textual_inversion
Fix textual inversion training with inpainting models
parents
47df0849
da5c1e8a
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
28 additions
and
1 deletion
+28
-1
modules/textual_inversion/textual_inversion.py
modules/textual_inversion/textual_inversion.py
+28
-1
No files found.
modules/textual_inversion/textual_inversion.py
View file @
8839b372
...
@@ -251,6 +251,26 @@ def validate_train_inputs(model_name, learn_rate, batch_size, gradient_step, dat
...
@@ -251,6 +251,26 @@ def validate_train_inputs(model_name, learn_rate, batch_size, gradient_step, dat
if
save_model_every
or
create_image_every
:
if
save_model_every
or
create_image_every
:
assert
log_directory
,
"Log directory is empty"
assert
log_directory
,
"Log directory is empty"
def
create_dummy_mask
(
x
,
width
=
None
,
height
=
None
):
if
shared
.
sd_model
.
model
.
conditioning_key
in
{
'hybrid'
,
'concat'
}:
# The "masked-image" in this case will just be all zeros since the entire image is masked.
image_conditioning
=
torch
.
zeros
(
x
.
shape
[
0
],
3
,
height
,
width
,
device
=
x
.
device
)
image_conditioning
=
shared
.
sd_model
.
get_first_stage_encoding
(
shared
.
sd_model
.
encode_first_stage
(
image_conditioning
))
# Add the fake full 1s mask to the first dimension.
image_conditioning
=
torch
.
nn
.
functional
.
pad
(
image_conditioning
,
(
0
,
0
,
0
,
0
,
1
,
0
),
value
=
1.0
)
image_conditioning
=
image_conditioning
.
to
(
x
.
dtype
)
else
:
# Dummy zero conditioning if we're not using inpainting model.
# Still takes up a bit of memory, but no encoder call.
# Pretty sure we can just make this a 1x1 image since its not going to be used besides its batch size.
image_conditioning
=
torch
.
zeros
(
x
.
shape
[
0
],
5
,
1
,
1
,
dtype
=
x
.
dtype
,
device
=
x
.
device
)
return
image_conditioning
def
train_embedding
(
embedding_name
,
learn_rate
,
batch_size
,
gradient_step
,
data_root
,
log_directory
,
training_width
,
training_height
,
steps
,
shuffle_tags
,
tag_drop_out
,
latent_sampling_method
,
create_image_every
,
save_embedding_every
,
template_file
,
save_image_with_stored_embedding
,
preview_from_txt2img
,
preview_prompt
,
preview_negative_prompt
,
preview_steps
,
preview_sampler_index
,
preview_cfg_scale
,
preview_seed
,
preview_width
,
preview_height
):
def
train_embedding
(
embedding_name
,
learn_rate
,
batch_size
,
gradient_step
,
data_root
,
log_directory
,
training_width
,
training_height
,
steps
,
shuffle_tags
,
tag_drop_out
,
latent_sampling_method
,
create_image_every
,
save_embedding_every
,
template_file
,
save_image_with_stored_embedding
,
preview_from_txt2img
,
preview_prompt
,
preview_negative_prompt
,
preview_steps
,
preview_sampler_index
,
preview_cfg_scale
,
preview_seed
,
preview_width
,
preview_height
):
save_embedding_every
=
save_embedding_every
or
0
save_embedding_every
=
save_embedding_every
or
0
create_image_every
=
create_image_every
or
0
create_image_every
=
create_image_every
or
0
...
@@ -341,6 +361,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
...
@@ -341,6 +361,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
forced_filename
=
"<none>"
forced_filename
=
"<none>"
embedding_yet_to_be_embedded
=
False
embedding_yet_to_be_embedded
=
False
img_c
=
None
pbar
=
tqdm
.
tqdm
(
total
=
steps
-
initial_step
)
pbar
=
tqdm
.
tqdm
(
total
=
steps
-
initial_step
)
try
:
try
:
for
i
in
range
((
steps
-
initial_step
)
*
gradient_step
):
for
i
in
range
((
steps
-
initial_step
)
*
gradient_step
):
...
@@ -363,9 +384,15 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
...
@@ -363,9 +384,15 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
# mask = torch.tensor(batch.emb_index).to(devices.device, non_blocking=pin_memory)
# mask = torch.tensor(batch.emb_index).to(devices.device, non_blocking=pin_memory)
# print(mask)
# print(mask)
# c[:, 1:1+embedding.vec.shape[0]] = embedding.vec.to(devices.device, non_blocking=pin_memory)
# c[:, 1:1+embedding.vec.shape[0]] = embedding.vec.to(devices.device, non_blocking=pin_memory)
if
img_c
is
None
:
img_c
=
create_dummy_mask
(
c
,
training_width
,
training_height
)
x
=
batch
.
latent_sample
.
to
(
devices
.
device
,
non_blocking
=
pin_memory
)
x
=
batch
.
latent_sample
.
to
(
devices
.
device
,
non_blocking
=
pin_memory
)
c
=
shared
.
sd_model
.
cond_stage_model
(
batch
.
cond_text
)
c
=
shared
.
sd_model
.
cond_stage_model
(
batch
.
cond_text
)
loss
=
shared
.
sd_model
(
x
,
c
)[
0
]
/
gradient_step
cond
=
{
"c_concat"
:
[
img_c
],
"c_crossattn"
:
[
c
]}
loss
=
shared
.
sd_model
(
x
,
cond
)[
0
]
/
gradient_step
del
x
del
x
_loss_step
+=
loss
.
item
()
_loss_step
+=
loss
.
item
()
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment