Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Sign in / Register
Toggle navigation
S
Stable Diffusion Webui
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Locked Files
Issues
0
Issues
0
List
Boards
Labels
Service Desk
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Security & Compliance
Security & Compliance
Dependency List
License Compliance
Packages
Packages
List
Container Registry
Analytics
Analytics
CI / CD
Code Review
Insights
Issues
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
novelai-storage
Stable Diffusion Webui
Commits
1c6efdbb
Commit
1c6efdbb
authored
Oct 18, 2023
by
v0xie
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
inference working but SLOW
parent
ec718f76
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
75 additions
and
40 deletions
+75
-40
extensions-builtin/Lora/network_oft.py
extensions-builtin/Lora/network_oft.py
+36
-37
extensions-builtin/Lora/networks.py
extensions-builtin/Lora/networks.py
+39
-3
No files found.
extensions-builtin/Lora/network_oft.py
View file @
1c6efdbb
...
...
@@ -12,6 +12,7 @@ class ModuleTypeOFT(network.ModuleType):
# adapted from https://github.com/kohya-ss/sd-scripts/blob/main/networks/oft.py
class
NetworkModuleOFT
(
network
.
NetworkModule
):
def
__init__
(
self
,
net
:
network
.
Network
,
weights
:
network
.
NetworkWeights
):
super
()
.
__init__
(
net
,
weights
)
self
.
oft_blocks
=
weights
.
w
[
"oft_blocks"
]
...
...
@@ -20,24 +21,29 @@ class NetworkModuleOFT(network.NetworkModule):
self
.
dim
=
self
.
oft_blocks
.
shape
[
0
]
self
.
num_blocks
=
self
.
dim
#if type(self.alpha) == torch.Tensor:
# self.alpha = self.alpha.detach().numpy()
if
"Linear"
in
self
.
sd_module
.
__class__
.
__name__
:
self
.
out_dim
=
self
.
sd_module
.
out_features
elif
"Conv"
in
self
.
sd_module
.
__class__
.
__name__
:
self
.
out_dim
=
self
.
sd_module
.
out_channels
self
.
constraint
=
self
.
alpha
*
self
.
out_dim
self
.
constraint
=
self
.
alpha
#self.constraint = self.alpha * self.out_dim
self
.
block_size
=
self
.
out_dim
//
self
.
num_blocks
self
.
oft_multiplier
=
self
.
multiplier
()
self
.
org_module
:
list
[
torch
.
Module
]
=
[
self
.
sd_module
]
self
.
R
=
self
.
get_weight
()
self
.
apply_to
()
# replace forward method of original linear rather than replacing the module
# self.org_forward = self.sd_module.forward
# self.sd_module.forward = self.forward
def
apply_to
(
self
):
self
.
org_forward
=
self
.
org_module
[
0
]
.
forward
self
.
org_module
[
0
]
.
forward
=
self
.
forward
def
get_weight
(
self
):
def
get_weight
(
self
,
multiplier
=
None
):
if
not
multiplier
:
multiplier
=
self
.
multiplier
()
block_Q
=
self
.
oft_blocks
-
self
.
oft_blocks
.
transpose
(
1
,
2
)
norm_Q
=
torch
.
norm
(
block_Q
.
flatten
())
new_norm_Q
=
torch
.
clamp
(
norm_Q
,
max
=
self
.
constraint
)
...
...
@@ -45,38 +51,31 @@ class NetworkModuleOFT(network.NetworkModule):
I
=
torch
.
eye
(
self
.
block_size
,
device
=
self
.
oft_blocks
.
device
)
.
unsqueeze
(
0
)
.
repeat
(
self
.
num_blocks
,
1
,
1
)
block_R
=
torch
.
matmul
(
I
+
block_Q
,
(
I
-
block_Q
)
.
inverse
())
block_R_weighted
=
self
.
oft_multiplier
*
block_R
+
(
1
-
self
.
oft_
multiplier
)
*
I
block_R_weighted
=
multiplier
*
block_R
+
(
1
-
multiplier
)
*
I
R
=
torch
.
block_diag
(
*
block_R_weighted
)
return
R
def
calc_updown
(
self
,
orig_weight
):
oft_blocks
=
self
.
oft_blocks
.
to
(
orig_weight
.
device
,
dtype
=
orig_weight
.
dtype
)
block_Q
=
oft_blocks
-
oft_blocks
.
transpose
(
1
,
2
)
norm_Q
=
torch
.
norm
(
block_Q
.
flatten
())
new_norm_Q
=
torch
.
clamp
(
norm_Q
,
max
=
self
.
constraint
)
block_Q
=
block_Q
*
((
new_norm_Q
+
1e-8
)
/
(
norm_Q
+
1e-8
))
I
=
torch
.
eye
(
self
.
block_size
,
device
=
oft_blocks
.
device
)
.
unsqueeze
(
0
)
.
repeat
(
self
.
num_blocks
,
1
,
1
)
block_R
=
torch
.
matmul
(
I
+
block_Q
,
(
I
-
block_Q
)
.
inverse
())
block_R_weighted
=
self
.
oft_multiplier
*
block_R
+
(
1
-
self
.
oft_multiplier
)
*
I
R
=
torch
.
block_diag
(
*
block_R_weighted
)
#R = self.get_weight().to(orig_weight.device, dtype=orig_weight.dtype)
# W = R*W_0
updown
=
orig_weight
+
R
output_shape
=
[
R
.
size
(
0
),
orig_weight
.
size
(
1
)]
R
=
self
.
R
if
orig_weight
.
dim
()
==
4
:
weight
=
torch
.
einsum
(
"oihw, op -> pihw"
,
orig_weight
,
R
)
else
:
weight
=
torch
.
einsum
(
"oi, op -> pi"
,
orig_weight
,
R
)
updown
=
orig_weight
@
R
output_shape
=
[
orig_weight
.
size
(
0
),
R
.
size
(
1
)]
#output_shape = [R.size(0), orig_weight.size(1)]
return
self
.
finalize_updown
(
updown
,
orig_weight
,
output_shape
)
# def forward(self, x, y=None):
# x = self.org_forward(x)
# if self.oft_multiplier == 0.0:
# return x
# R = self.get_weight().to(x.device, dtype=x.dtype)
# if x.dim() == 4:
# x = x.permute(0, 2, 3, 1)
# x = torch.matmul(x, R)
# x = x.permute(0, 3, 1, 2)
# else:
# x = torch.matmul(x, R)
# return x
def
forward
(
self
,
x
,
y
=
None
):
x
=
self
.
org_forward
(
x
)
if
self
.
multiplier
()
==
0.0
:
return
x
R
=
self
.
get_weight
()
.
to
(
x
.
device
,
dtype
=
x
.
dtype
)
if
x
.
dim
()
==
4
:
x
=
x
.
permute
(
0
,
2
,
3
,
1
)
x
=
torch
.
matmul
(
x
,
R
)
x
=
x
.
permute
(
0
,
3
,
1
,
2
)
else
:
x
=
torch
.
matmul
(
x
,
R
)
return
x
extensions-builtin/Lora/networks.py
View file @
1c6efdbb
...
...
@@ -170,6 +170,10 @@ def load_network(name, network_on_disk):
emb_dict
[
vec_name
]
=
weight
bundle_embeddings
[
emb_name
]
=
emb_dict
#if key_network_without_network_parts == "oft_unet":
# print(key_network_without_network_parts)
# pass
key
=
convert_diffusers_name_to_compvis
(
key_network_without_network_parts
,
is_sd2
)
sd_module
=
shared
.
sd_model
.
network_layer_mapping
.
get
(
key
,
None
)
...
...
@@ -185,15 +189,39 @@ def load_network(name, network_on_disk):
elif
sd_module
is
None
and
"lora_te1_text_model"
in
key_network_without_network_parts
:
key
=
key_network_without_network_parts
.
replace
(
"lora_te1_text_model"
,
"0_transformer_text_model"
)
sd_module
=
shared
.
sd_model
.
network_layer_mapping
.
get
(
key
,
None
)
elif
sd_module
is
None
and
"oft_unet"
in
key_network_without_network_parts
:
key
=
key_network_without_network_parts
.
replace
(
"oft_unet"
,
"diffusion_model"
)
sd_module
=
shared
.
sd_model
.
network_layer_mapping
.
get
(
key
,
None
)
# some SD1 Loras also have correct compvis keys
if
sd_module
is
None
:
key
=
key_network_without_network_parts
.
replace
(
"lora_te1_text_model"
,
"transformer_text_model"
)
sd_module
=
shared
.
sd_model
.
network_layer_mapping
.
get
(
key
,
None
)
elif
sd_module
is
None
and
"oft_unet"
in
key_network_without_network_parts
:
# UNET_TARGET_REPLACE_MODULE_ALL_LINEAR = ["Transformer2DModel"]
# UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 = ["ResnetBlock2D", "Downsample2D", "Upsample2D"]
UNET_TARGET_REPLACE_MODULE_ATTN_ONLY
=
[
"CrossAttention"
]
# TODO: Change matchedm odules based on whether all linear, conv, etc
key
=
key_network_without_network_parts
.
replace
(
"oft_unet"
,
"diffusion_model"
)
sd_module
=
shared
.
sd_model
.
network_layer_mapping
.
get
(
key
,
None
)
#key_no_suffix = key.rsplit("_to_", 1)[0]
## Match all modules of class CrossAttention
#replace_module_list = []
#for module_type in UNET_TARGET_REPLACE_MODULE_ATTN_ONLY:
# replace_module_list += [module for k, module in shared.sd_model.network_layer_mapping.items() if module_type in module.__class__.__name__]
#matched_module = replace_module_list.get(key_no_suffix, None)
#if key.endswith('to_q'):
# sd_module = matched_module.to_q or None
#if key.endswith('to_k'):
# sd_module = matched_module.to_k or None
#if key.endswith('to_v'):
# sd_module = matched_module.to_v or None
#if key.endswith('to_out_0'):
# sd_module = matched_module.to_out[0] or None
#if key.endswith('to_out_1'):
# sd_module = matched_module.to_out[1] or None
if
sd_module
is
None
:
keys_failed_to_match
[
key_network
]
=
key
continue
...
...
@@ -215,6 +243,14 @@ def load_network(name, network_on_disk):
net
.
modules
[
key
]
=
net_module
# replaces forward method of original Linear
# applied_to_count = 0
#for key, created_module in net.modules.items():
# if isinstance(created_module, network_oft.NetworkModuleOFT):
# net_module.apply_to()
#applied_to_count += 1
# print(f'Applied OFT modules: {applied_to_count}')
embeddings
=
{}
for
emb_name
,
data
in
bundle_embeddings
.
items
():
embedding
=
textual_inversion
.
create_embedding_from_data
(
data
,
emb_name
,
filename
=
network_on_disk
.
filename
+
"/"
+
emb_name
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment