Commit 13f22974 authored by snoppy's avatar snoppy

chore: fix typos

Signed-off-by: default avatarsnoppy <michaleli@foxmail.com>
parent feee37d7
...@@ -572,7 +572,7 @@ class LatentDiffusionV1(DDPMV1): ...@@ -572,7 +572,7 @@ class LatentDiffusionV1(DDPMV1):
:param h: height :param h: height
:param w: width :param w: width
:return: normalized distance to image border, :return: normalized distance to image border,
wtith min distance = 0 at border and max dist = 0.5 at image center with min distance = 0 at border and max dist = 0.5 at image center
""" """
lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2) lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
arr = self.meshgrid(h, w) / lower_right_corner arr = self.meshgrid(h, w) / lower_right_corner
......
...@@ -372,7 +372,7 @@ class Api: ...@@ -372,7 +372,7 @@ class Api:
return {} return {}
possible_fields = infotext_utils.paste_fields[tabname]["fields"] possible_fields = infotext_utils.paste_fields[tabname]["fields"]
set_fields = request.model_dump(exclude_unset=True) if hasattr(request, "request") else request.dict(exclude_unset=True) # pydantic v1/v2 have differenrt names for this set_fields = request.model_dump(exclude_unset=True) if hasattr(request, "request") else request.dict(exclude_unset=True) # pydantic v1/v2 have different names for this
params = infotext_utils.parse_generation_parameters(request.infotext) params = infotext_utils.parse_generation_parameters(request.infotext)
def get_field_value(field, params): def get_field_value(field, params):
......
...@@ -258,7 +258,7 @@ def test_for_nans(x, where): ...@@ -258,7 +258,7 @@ def test_for_nans(x, where):
@lru_cache @lru_cache
def first_time_calculation(): def first_time_calculation():
""" """
just do any calculation with pytorch layers - the first time this is done it allocaltes about 700MB of memory and just do any calculation with pytorch layers - the first time this is done it allocates about 700MB of memory and
spends about 2.7 seconds doing that, at least with NVidia. spends about 2.7 seconds doing that, at least with NVidia.
""" """
......
...@@ -323,7 +323,7 @@ def model_wrapper( ...@@ -323,7 +323,7 @@ def model_wrapper(
def model_fn(x, t_continuous, condition, unconditional_condition): def model_fn(x, t_continuous, condition, unconditional_condition):
""" """
The noise predicition model function that is used for DPM-Solver. The noise prediction model function that is used for DPM-Solver.
""" """
if t_continuous.reshape((-1,)).shape[0] == 1: if t_continuous.reshape((-1,)).shape[0] == 1:
t_continuous = t_continuous.expand((x.shape[0])) t_continuous = t_continuous.expand((x.shape[0]))
......
...@@ -47,7 +47,7 @@ restricted_opts: set[str] = None ...@@ -47,7 +47,7 @@ restricted_opts: set[str] = None
sd_model: sd_models_types.WebuiSdModel = None sd_model: sd_models_types.WebuiSdModel = None
settings_components: dict = None settings_components: dict = None
"""assigned from ui.py, a mapping on setting names to gradio components repsponsible for those settings""" """assigned from ui.py, a mapping on setting names to gradio components responsible for those settings"""
tab_names = [] tab_names = []
......
...@@ -156,7 +156,7 @@ class MassFileLister: ...@@ -156,7 +156,7 @@ class MassFileLister:
def topological_sort(dependencies): def topological_sort(dependencies):
"""Accepts a dictionary mapping name to its dependencies, returns a list of names ordered according to dependencies. """Accepts a dictionary mapping name to its dependencies, returns a list of names ordered according to dependencies.
Ignores errors relating to missing dependeencies or circular dependencies Ignores errors relating to missing dependencies or circular dependencies
""" """
visited = {} visited = {}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment