Commit c8d491e1 authored by novelailab's avatar novelailab

eval harness works

parent 44751bc6
......@@ -133,3 +133,5 @@ gptjconvert
j6b_vanilla
wandb
*.map
pretrained
lm_cache
\ No newline at end of file
from . import gptj
MODEL_MAP = {
"gptj": (gptj.GPTJModel, gptj.GPTJConfig),
}
def get_model(model_name: str):
return MODEL_MAP[model_name]
......@@ -13,7 +13,7 @@ except ImportError:
import os
from pathlib import Path
import math
from basedformer import lm_base
from basedformer import lm_utils
from dataclasses import dataclass
def fixed_pos_embedding(dim=None, seq_len=None, x=None):
......@@ -192,6 +192,7 @@ class GPTJLayer(nn.Module):
class GPTJModel(nn.Module):
def __init__(self, config, **kwargs):
nn.Module.__init__(self)
self.config = config
self.n_layer = config.n_layer
self.hidden_dim = config.hidden_dim
self.vocab_embed = nn.Embedding(config.vocab_dim, self.hidden_dim, device=config.device, dtype=config.dtype)
......@@ -248,6 +249,7 @@ class GPTJModel(nn.Module):
class GPTJConfig:
n_layer: int = 6
n_head: int = 8
n_tokens: int = 2048
hidden_dim: int = 512
vocab_dim: int = 50400
eps: float = 1e-5
......@@ -265,5 +267,5 @@ def load_gpt_j(path="models/6b", state_dict=None):
"eps": 1e-5
}
config = GPTJConfig(**config)
model = lm_base.load(GPTJModel, config, path)
model = lm_utils._load_dict_model(GPTJModel, config, path)
return model
from basedformer import utils
import basedformer
import math
import torch
from torch import nn
......@@ -35,7 +36,34 @@ def no_init(model_class, config):
model = utils.no_init(lambda: model_class(config))
return model
def load(model_class, config, path=None, state_dict=None, strict=False):
def save(model, path):
try: os.mkdir(path)
except: pass
checkpoint = {}
for i, x in enumerate(model.state_dict().items()):
checkpoint[x[0]] = f"{path}/b{i}.pt"
torch.save(x[1], f"{path}/b{i}.pt")
torch.save(checkpoint, f"{path}/m.pt")
def load_from_path(config_folder=None, strict=False):
config_folder = Path(config_folder)
config = _load_config_file(config_folder / "config.json")
model_class = basedformer.get_model(config["model_class"])[0]
config_class = basedformer.get_model(config["model_class"])[1]
model_path = config["model_path"]
model_config = config["model_config"]
model_config = config_class(**model_config)
print(model_config)
if model_path == ".":
# model_path is the config_folder directory.
model_path = config_folder
model_path = Path(model_path) / "lm"
model = _load_dict_model(model_class, model_config, model_path, strict=strict)
return model
def _load_dict_model(model_class, config, path=None, state_dict=None, strict=False):
# I am kinda sad that we will not have a load function in lm object itself.
# might be better to add load functions -- actually nope.
if path:
......@@ -45,13 +73,16 @@ def load(model_class, config, path=None, state_dict=None, strict=False):
model.load_state_dict(state_dict, strict=strict)
return model
def save(model, path):
try: os.mkdir(path)
except: pass
checkpoint = {}
for i, x in enumerate(model.state_dict().items()):
checkpoint[x[0]] = f"{path}/b{i}.pt"
torch.save(x[1], f"{path}/b{i}.pt")
torch.save(checkpoint, f"{path}/m.pt")
def _load_config_file(config_file):
if not config_file.exists():
raise FileNotFoundError(f"Config file not found at {config_file}")
with open(config_file) as f:
config = json.load(f)
return config
......@@ -2,7 +2,6 @@ from basedformer import gptj
from basedformer.utils import *
from transformers import AutoTokenizer
from icecream import ic
import functorch
import time
import sys
......@@ -190,7 +189,6 @@ def generate(forward, prompt_tokens, tokens_to_generate=50, ops_list=[{"temp": 0
"rep_pen": rep_pen,
}
funcnomial = functorch.vmap(func_multinomial, randomness="different")
for _ in range(tokens_to_generate):
logits, kv = forward(in_tokens, cache=True, kv=kv)
logits = logits[:, -1, :] #get the last token in the seq
......
import best_download
# patch best_download (eval harness downloader) to only happen on the first local rank
fn = best_download.download_file
import os
import sys
import dataclasses
from functools import partial
sys.path.append(
os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir))
)
from tqdm import tqdm
import torch
import torch.nn.functional as F
import torch.nn as nn
import transformers
import basedformer.sampling as sampling
from lm_eval.base import BaseLM
from basedformer import gptj
class BasedformerLM(BaseLM):
def __init__(
self,
device="cuda",
pretrained : nn.Module = None,
tokenizer=None,
batch_size=1,
):
super().__init__()
from lm_eval.models.gpt2 import GPT2LM
from lm_eval import tasks, evaluator, utils, base
from basedformer import optimizer, utils, gptj, noemblm, gpt2
if device:
if device not in ["cuda", "cpu"]:
device = int(device)
self._device = torch.device(device)
print(f"Using device '{device}'")
else:
print("Device not specified")
print(f"Cuda Available? {torch.cuda.is_available()}")
self._device = (
torch.device("cuda")
if torch.cuda.is_available()
else torch.device("cpu")
)
class EvalHarnessAdapter(GPT2LM):
"""
An adapter to run NeoX models on LM Evaluation Harness (https://github.com/EleutherAI/lm-evaluation-harness) tasks.
# TODO: update this to be less of a hack once subfolder is fixed in HF
self.gpt2 = pretrained
Args:
model: A NeoX Model
forward_step_fn: A function that runs a forward pass through the model, returning `tuple(loss, logits)`.
neox_args: a NeoXArgs object containing the model configuration.
batch_size (optional): An argument to override the batch size, which defaults to batch size per gpu * dp world size.
"""
# pretrained tokenizer for neo is broken for now so just hard-coding this to gpt2
self.tokenizer = transformers.AutoTokenizer.from_pretrained(
"gpt2" if tokenizer is None else tokenizer,
)
def __init__(self, model, forward_step_fn, neox_args, batch_size=None):
self.cache_hook = base.CacheHook(None)
self.model = model
self.neox_args = neox_args
self.tokenizer = neox_args.tokenizer
self._device = torch.device(f"cuda:{neox_args.local_rank}")
self._eot_token_id = 50256
self._max_length = neox_args.max_position_embeddings // 2
self._max_gen_toks = 128
self._vocab_size = neox_args.padded_vocab_size
assert isinstance(
self.tokenizer,
(
transformers.GPT2Tokenizer,
transformers.GPT2TokenizerFast,
transformers.T5Tokenizer,
transformers.T5TokenizerFast,
),
), "this tokenizer has not been checked for compatibility yet!"
# parallelism args:
self.is_main = neox_args.rank == 0
self.is_local_main = neox_args.local_rank == 0
self.is_model_parallel = neox_args.model_parallel_size > 1
self.is_pipe_parallel = self.model.is_pipe_parallel
self.is_data_parallel = self.model.is_data_parallel
self.is_last_stage = (
True if not self.is_pipe_parallel else model.is_last_stage()
) # only the last stage of the pipeline model will receive the logits
self.dp_world_size = mpu.get_data_parallel_world_size()
self.dp_rank = mpu.get_data_parallel_rank()
self.dp_group = mpu.get_data_parallel_group()
self.is_mp_rank_0 = mpu.get_model_parallel_rank() == 0
self.vocab_size = self.tokenizer.vocab_size
self._batch_size = batch_size or (
neox_args.batch_size * self.dp_world_size
) # default batch size to bs per gpu * dp size
if isinstance(
self.tokenizer, (transformers.GPT2Tokenizer, transformers.GPT2TokenizerFast)
):
assert self.tokenizer.encode("hello\n\nhello") == [
31373,
198,
198,
31373,
], self.tokenizer.encode("hello\n\nhello")
# some utility functions:
# we need to patch tokenizer methods, because lm_eval uses them internally:
self.tokenizer.encode = self.tokenizer.tokenize
self.tokenizer.decode = self.tokenizer.detokenize
self._forward_step_fn = partial(
forward_step_fn, neox_args=neox_args, timers=None, return_logits=True
)
self.generate = partial(
generate_samples_from_prompt,
neox_args=neox_args,
model=model,
maximum_tokens=self._max_gen_toks,
temperature=0.0,
)
# multithreading and batching
self.batch_size_per_gpu = batch_size # todo: adaptive batch size
@property
def vocab_size(self):
return self._vocab_size
# TODO: fix multi-gpu
# gpus = torch.cuda.device_count()
# if gpus > 1:
# self.gpt2 = nn.DataParallel(self.gpt2)
@property
def eot_token_id(self):
# we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
return self._eos_token_id
return self.tokenizer.eos_token_id
@property
def max_length(self):
return self._max_length
return self.gpt2.n_tokens
@property
def max_gen_toks(self):
return self._max_gen_toks
return 256
@property
def batch_size(self):
return self._batch_size
# TODO: fix multi-gpu
return self.batch_size_per_gpu # * gpus
@property
def device(self):
# TODO: fix multi-gpu
return self._device
def tok_encode(self, string: str):
return self.tokenizer.encode(string)
return self.tokenizer.encode(string, add_special_tokens=False)
def tok_decode(self, tokens):
return self.tokenizer.decode(tokens)
def greedy_until(self, requests):
"""
Greedy until is lm_eval harness' way to say "do greedy generation" - necessary for some tasks.
the eval harness dispatches requests to the model, and the model does argmax generation, the results of which
are returned to the eval harness to evaluate.
TODO: batched / data parallel generation
:param requests: Dictionary of requests containing the context (prompt) and 'until' - a token or
list of stop tokens.
"""
self.model.module.inference_mode(use_cache=True) # tell model to cache kv pairs
res = []
def _collate(x):
toks = self.tokenizer.encode(x[0])
return (len(toks), x[0])
reord = utils.Reorderer(requests, _collate)
for context, until in tqdm(reord.get_reordered(), "Running greedy generation"):
if isinstance(until, str):
until = [until]
stop_tokens = [self.tokenizer.encode(i) for i in until]
cont = self.generate(
text=context,
stop_tokens=stop_tokens,
recompute=self.neox_args.recompute,
)
if cont:
s = cont[0]["text"] or ""
else:
s = ""
for term in until:
s = s.split(term)[0]
# partial caching
self.cache_hook.add_partial("greedy_until", (context, until), s)
res.append(s)
self.model.module.train_mode() # set back to train mode
return reord.get_original(res)
def _loglikelihood_tokens(self, requests, disable_tqdm=False):
def _model_call(self, inps):
"""
In this method, the model doesn't do any generation, but just returns log likelihoods
for the next token, which eval harness uses to evaluate.
:param requests: Dictionary of requests containing the context and the expected continuation.
:param disable_tqdm: If True, disable tqdm progress bar.
inps: a torch tensor of shape [batch, sequence]
the size of sequence may vary from call to call
returns: a torch tensor of shape [batch, sequence, vocab] with the
logits returned from the model
"""
self.model.module.inference_mode(
use_cache=False
) # tell model to gather parallel outputs, but not cache key-value pairs
disable_tqdm = disable_tqdm if self.is_main else True
res = []
res_len = 0 # storing the result length for later
with torch.no_grad():
def _collate(x):
toks = x[1] + x[2]
return (-len(toks), tuple(toks))
reord = utils.Reorderer(requests, _collate)
for chunk in utils.chunks(
tqdm(reord.get_reordered(), disable=disable_tqdm), self.batch_size
):
inps, contlens, inplens, padding_length = [], [], [], None
for cache_key, context_enc, continuation_enc in chunk:
# when too long to fit in context, truncate from the left
inp = torch.tensor(
(context_enc + continuation_enc)[-(self.max_length + 1) :][:-1],
dtype=torch.long,
).to(self.device)
(inplen,) = inp.shape
cont = continuation_enc
# since in _collate we make sure length is descending, the longest is always the first one.
padding_length = (
padding_length if padding_length is not None else inplen
)
# pad to length
inp = torch.cat(
[
inp, # [seq]
torch.zeros(padding_length - inplen, dtype=torch.long).to(
inp.device
), # [padding_length - seq]
],
dim=0,
)
inps.append(inp.unsqueeze(0))
contlens.append(cont)
inplens.append(inplen)
logits = self._model_call(torch.cat(inps, dim=0))
res_len += len(chunk)
if logits is not None:
multi_logits = F.log_softmax(logits, dim=-1) # [batch, seq, vocab]
for (cache_key, _, _), logits, inp, inplen, cont_toks in zip(
chunk, multi_logits, inps, inplens, contlens
):
contlen = len(cont_toks)
logits = logits[inplen - contlen : inplen].unsqueeze(
0
) # [1, seq, vocab]
greedy_tokens = logits.argmax(dim=-1)
# cont_toks :: [1, seq]
cont_toks = (
torch.tensor(cont_toks, dtype=torch.long)
.unsqueeze(0)
.to(multi_logits.device)
)
max_equal = (greedy_tokens == cont_toks).all()
logits = torch.gather(
logits, 2, cont_toks.unsqueeze(-1)
).squeeze(
-1
) # [1, seq]
answer = (float(logits.sum()), bool(max_equal))
# partial caching
if cache_key is not None:
self.cache_hook.add_partial(
"loglikelihood", cache_key, answer
)
res.append(answer)
# broadcast results to all ranks
if self.is_pipe_parallel:
src_rank = self.model.grid.stage_to_global(self.model.num_stages - 1)
if res:
logits_sums, max_equals = list(zip(*res))
logits_sums = torch.FloatTensor(logits_sums).cuda()
max_equals = torch.LongTensor(max_equals).cuda()
else:
logits_sums = torch.zeros(res_len, dtype=torch.float32).cuda()
max_equals = torch.zeros(res_len, dtype=torch.int64).cuda()
torch.distributed.broadcast(
tensor=logits_sums,
src=src_rank,
group=mpu.get_pipe_parallel_group(),
)
torch.distributed.broadcast(
tensor=max_equals, src=src_rank, group=mpu.get_pipe_parallel_group()
)
max_equals = [bool(i) for i in max_equals.tolist()]
logits_sums = logits_sums.tolist()
res = list(zip(logits_sums, max_equals))
self.model.module.train_mode() # set back to train mode
return reord.get_original(res)
def _dp_scatter(self, inps):
"""
Scatters the inputs to all data parallel ranks.
"""
batch_size = inps.shape[0]
padded = False
if batch_size % self.dp_world_size != 0:
# The last batch could potentially not fill the full batch size (if the dataset size is not divisible by batch size)
# In this case we pad the batch
padded_size = self.dp_world_size - (batch_size % self.dp_world_size)
print_rank_0(
f"WARNING: Batch size ({batch_size}) must be divisible by dp world size ({self.dp_world_size}). Padding inputs to {padded_size}."
)
inps = torch.cat(
[inps] + [inps[0:1, ...] for _ in range(padded_size)], dim=0
) # pad with first inp item
padded = True
assert (
inps.shape[0] % self.dp_world_size == 0
), f"batch size ({inps.shape[0]}) must be divisible by dp world size ({self.dp_world_size})"
# get a chunk for each data parallel rank
chunk_size = inps.shape[0] // self.dp_world_size
inps = inps[self.dp_rank * chunk_size : (self.dp_rank + 1) * chunk_size]
# make a dummy dataloader / iterator to pass to model
# we need to do this because deepspeed pipe parallel only takes an iterator
# in this format
return iter([{"text": F.pad(inps, pad=(0, 1))}]), padded
def _dp_gather(self, logits):
"""
Gather logits from all data parallel ranks
"""
if logits is not None:
tensor_list = [torch.zeros_like(logits) for _ in range(self.dp_world_size)]
torch.distributed.all_gather(
tensor_list, logits, group=mpu.get_data_parallel_group()
)
logits = torch.cat(tensor_list, dim=0)
return logits
def _model_call(self, inps):
batch_size = inps.shape[0]
# scatter inputs to all dp ranks:
inps, padded = self._dp_scatter(inps)
if self.neox_args.is_pipe_parallel:
# need these flags to stop deepspeed pipe parallel from hanging
self.model.first_output_send = True
self.model.pipe_recv_buf = None
_, logits = self._forward_step_fn(model=self.model, data_iterator=inps)
# gather outputs from all dp ranks:
logits = self._dp_gather(logits)
# if logits have been padded (normally just last item where batch size is unequal)
# restore to original shape
if padded and logits is not None:
logits = logits[:batch_size, ...]
return logits
return self.gpt2(inps)[0][:, :, :self.vocab_size + 1]
def _model_generate(self, context, max_length, eos_token_id):
# Isn't used because we override `greedy_until``.
raise NotImplementedError()
return sampling.generate_greedy(self.gpt2.forward, context, max_length)
@torch.no_grad()
def run_eval(
self,
eval_tasks=None,
num_fewshot=0,
bootstrap_iters=2,
description_dict=None,
use_cache=True,
name="neox",
limit=None
):
was_training = self.model.training
self.model.eval()
in_micro_batches = (
self.model.micro_batches
) # store input microbatches - we need to set to 1 during eval, but want to return to its original value after
self.model.micro_batches = 1
if eval_tasks is None:
eval_tasks = [
"lambada",
"piqa",
"hellaswag",
"winogrande",
"mathqa",
"pubmedqa",
]
# **HACK INCOMING**:
# first get task dict on local main rank
# the tasks are downloaded *as they are initialized*, and the downloads don't like multithreading.
# so we download them once on the local main rank, wait, and then initialize them on all other ranks, which *should* load from the cache.
if self.is_local_main:
task_dict = tasks.get_task_dict(eval_tasks)
# torch barrier
if torch.distributed.is_initialized():
torch.distributed.barrier()
task_dict = tasks.get_task_dict(eval_tasks)
lm = self
if use_cache:
# TODO(jon-tow): Append a subset of `neox_args` to the cache database
# name arg to distinguish model runs that use different configurations.
lm = base.CachingLM(lm, 'lm_cache/' + name + '.db')
results = evaluator.evaluate(
lm=lm,
task_dict=tasks.get_task_dict(eval_tasks),
description_dict=description_dict,
num_fewshot=num_fewshot,
limit=limit,
bootstrap_iters=bootstrap_iters,
)
results["config"] = {
"model": name,
"model_args": dataclasses.asdict(self.neox_args),
"num_fewshot": num_fewshot,
"batch_size": self.batch_size,
"device": str(self.device),
"no_cache": not use_cache,
"limit": limit,
"bootstrap_iters": bootstrap_iters,
"description_dict": description_dict
}
if was_training:
self.model.train()
self.model.micro_batches = in_micro_batches
return results
if __name__ == '__main__':
def run_eval_harness(
model,
forward_step_fn,
neox_args,
batch_size=None,
eval_tasks=None,
num_fewshot=0,
bootstrap_iters=2,
):
adapter = EvalHarnessAdapter(model, forward_step_fn, neox_args, batch_size)
return adapter.run_eval(
eval_tasks=eval_tasks, num_fewshot=num_fewshot, bootstrap_iters=bootstrap_iters
)
\ No newline at end of file
based_model = gptj.load_gpt_j().cuda().half().eval()
adapter = BasedformerLM(pretrained=based_model, batch_size=1)
adapter.run_eval(eval_tasks=['lambada', 'piqa'], num_fewshot=0, bootstrap_iters=2)
\ No newline at end of file
......@@ -24,20 +24,25 @@ config_obj.create_service(overwrite=True)
remote = config_obj.get_pyfra_remote()
env1 = remote.env('noname', python_version=None)
path = env1.path('/home/xuser/diffusionstorage/workspace/kuru/basedformer')
env1.sh('pip install /home/xuser/hugessd/pytorch/torch-1.10.1+cu113-cp38-cp38-linux_x86_64.whl')
env1.sh('pip install einops numpy')
env1.sh('pip install tqdm')
env1.sh('pip install /home/xuser/diffusionstorage/workspace/finetune/pokepls/transformers-repo')
env1.sh('pip3 install einops==0.4.1 pyyaml wandb')
env1.sh('wandb login 21a9442d42a35e15ce421f2b702ec58508b9adc4')
env1.sh('pip3 install dotmap icecream')
path.sh("pip3 install --editable .")
#path.sh("pip3 uninstall torch")
#path.sh("pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113")
if False:
env1.sh('pip install /home/xuser/hugessd/pytorch/torch-1.10.1+cu113-cp38-cp38-linux_x86_64.whl')
env1.sh('pip install einops numpy')
env1.sh('pip install tqdm')
env1.sh('pip install /home/xuser/diffusionstorage/workspace/finetune/pokepls/transformers-repo')
env1.sh('pip3 install einops==0.4.1 pyyaml wandb')
env1.sh('wandb login 21a9442d42a35e15ce421f2b702ec58508b9adc4')
env1.sh('pip3 install dotmap icecream')
path.sh("pip3 install --editable .")
#path.sh("pip3 uninstall torch")
#path.sh("pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113")
with always_rerun():
if bash:
path.sh("bash")
if True:
path.sh("python3 ../lm-evaluation-harness/main.py --model basedformer --batch_size 8 --model_args pretrained=/home/xuser/diffusionstorage/workspace/kuru/basedformer/pretrained/gptj-6b --device 0 --tasks lambada")
#path.sh("python3 ../lm-evaluation-harness/main.py --batch_size 8")
else:
print(f"Running {sys.argv[1]}")
path.sh(f'python3 {sys.argv[1]}')
from basedformer import gptj
from basedformer.utils import *
import basedformer.lm_utils as lmu
import time
import torch
......@@ -8,11 +9,7 @@ import numpy as np
from tqdm import tqdm
from contextlib import contextmanager
import torch.nn.functional as F
from transformers import (
AutoModelForCausalLM,
GPTNeoForCausalLM,
AutoConfig,
)
from transformers import GPTNeoForCausalLM
#replicating timeit magic function of ipython
def timeit(func, r=1, n=5, quiet=False, function=None, do_tqdm=False, first=True):
precision = 'ns'
......@@ -67,10 +64,11 @@ def timeit(func, r=1, n=5, quiet=False, function=None, do_tqdm=False, first=True
with torch.no_grad():
based_model = gptj.load_gpt_j().cuda().half().eval()
print("Loaded based model")
hf_model = no_init(lambda: AutoModelForCausalLM.from_pretrained('/home/xuser/models/j6b_ckpt_14001')).cuda().half().eval()
hf_model = no_init(lambda: GPTNeoForCausalLM.from_pretrained('/home/xuser/models/j6b_ckpt_14001')).cuda().half().eval()
print("Loaded hf model")
path = "/home/xuser/diffusionstorage/workspace/kuru/basedformer/pretrained/gptj-6b"
based_model = lmu.load_from_path(path).cuda().half().eval()
print("Loaded based model")
x = torch.randint(0, 50256, (1, 2048)).cuda().long()
assert torch.allclose(hf_model.transformer.wte(x), based_model.vocab_embed(x))
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment