Commit a1ab899d authored by novelailab's avatar novelailab

copy eval adapter from neox, fill this in later

parent 074d25c5
import best_download
# patch best_download (eval harness downloader) to only happen on the first local rank
fn = best_download.download_file
import os
import sys
import dataclasses
from functools import partial
sys.path.append(
os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir))
)
from tqdm import tqdm
import torch
import torch.nn.functional as F
from lm_eval.models.gpt2 import GPT2LM
from lm_eval import tasks, evaluator, utils, base
class EvalHarnessAdapter(GPT2LM):
"""
An adapter to run NeoX models on LM Evaluation Harness (https://github.com/EleutherAI/lm-evaluation-harness) tasks.
Args:
model: A NeoX Model
forward_step_fn: A function that runs a forward pass through the model, returning `tuple(loss, logits)`.
neox_args: a NeoXArgs object containing the model configuration.
batch_size (optional): An argument to override the batch size, which defaults to batch size per gpu * dp world size.
"""
def __init__(self, model, forward_step_fn, neox_args, batch_size=None):
self.cache_hook = base.CacheHook(None)
self.model = model
self.neox_args = neox_args
self.tokenizer = neox_args.tokenizer
self._device = torch.device(f"cuda:{neox_args.local_rank}")
self._eot_token_id = neox_args.tokenizer.eod_id
self._max_length = neox_args.max_position_embeddings // 2
self._max_gen_toks = 128
self._vocab_size = neox_args.padded_vocab_size
# parallelism args:
self.is_main = neox_args.rank == 0
self.is_local_main = neox_args.local_rank == 0
self.is_model_parallel = neox_args.model_parallel_size > 1
self.is_pipe_parallel = self.model.is_pipe_parallel
self.is_data_parallel = self.model.is_data_parallel
self.is_last_stage = (
True if not self.is_pipe_parallel else model.is_last_stage()
) # only the last stage of the pipeline model will receive the logits
self.dp_world_size = mpu.get_data_parallel_world_size()
self.dp_rank = mpu.get_data_parallel_rank()
self.dp_group = mpu.get_data_parallel_group()
self.is_mp_rank_0 = mpu.get_model_parallel_rank() == 0
self._batch_size = batch_size or (
neox_args.batch_size * self.dp_world_size
) # default batch size to bs per gpu * dp size
# some utility functions:
# we need to patch tokenizer methods, because lm_eval uses them internally:
self.tokenizer.encode = self.tokenizer.tokenize
self.tokenizer.decode = self.tokenizer.detokenize
self._forward_step_fn = partial(
forward_step_fn, neox_args=neox_args, timers=None, return_logits=True
)
self.generate = partial(
generate_samples_from_prompt,
neox_args=neox_args,
model=model,
maximum_tokens=self._max_gen_toks,
temperature=0.0,
)
@property
def vocab_size(self):
return self._vocab_size
@property
def eot_token_id(self):
# we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
return self._eos_token_id
@property
def max_length(self):
return self._max_length
@property
def max_gen_toks(self):
return self._max_gen_toks
@property
def batch_size(self):
return self._batch_size
@property
def device(self):
return self._device
def tok_encode(self, string: str):
return self.tokenizer.encode(string)
def tok_decode(self, tokens):
return self.tokenizer.decode(tokens)
def greedy_until(self, requests):
"""
Greedy until is lm_eval harness' way to say "do greedy generation" - necessary for some tasks.
the eval harness dispatches requests to the model, and the model does argmax generation, the results of which
are returned to the eval harness to evaluate.
TODO: batched / data parallel generation
:param requests: Dictionary of requests containing the context (prompt) and 'until' - a token or
list of stop tokens.
"""
self.model.module.inference_mode(use_cache=True) # tell model to cache kv pairs
res = []
def _collate(x):
toks = self.tokenizer.encode(x[0])
return (len(toks), x[0])
reord = utils.Reorderer(requests, _collate)
for context, until in tqdm(reord.get_reordered(), "Running greedy generation"):
if isinstance(until, str):
until = [until]
stop_tokens = [self.tokenizer.encode(i) for i in until]
cont = self.generate(
text=context,
stop_tokens=stop_tokens,
recompute=self.neox_args.recompute,
)
if cont:
s = cont[0]["text"] or ""
else:
s = ""
for term in until:
s = s.split(term)[0]
# partial caching
self.cache_hook.add_partial("greedy_until", (context, until), s)
res.append(s)
self.model.module.train_mode() # set back to train mode
return reord.get_original(res)
def _loglikelihood_tokens(self, requests, disable_tqdm=False):
"""
In this method, the model doesn't do any generation, but just returns log likelihoods
for the next token, which eval harness uses to evaluate.
:param requests: Dictionary of requests containing the context and the expected continuation.
:param disable_tqdm: If True, disable tqdm progress bar.
"""
self.model.module.inference_mode(
use_cache=False
) # tell model to gather parallel outputs, but not cache key-value pairs
disable_tqdm = disable_tqdm if self.is_main else True
res = []
res_len = 0 # storing the result length for later
with torch.no_grad():
def _collate(x):
toks = x[1] + x[2]
return (-len(toks), tuple(toks))
reord = utils.Reorderer(requests, _collate)
for chunk in utils.chunks(
tqdm(reord.get_reordered(), disable=disable_tqdm), self.batch_size
):
inps, contlens, inplens, padding_length = [], [], [], None
for cache_key, context_enc, continuation_enc in chunk:
# when too long to fit in context, truncate from the left
inp = torch.tensor(
(context_enc + continuation_enc)[-(self.max_length + 1) :][:-1],
dtype=torch.long,
).to(self.device)
(inplen,) = inp.shape
cont = continuation_enc
# since in _collate we make sure length is descending, the longest is always the first one.
padding_length = (
padding_length if padding_length is not None else inplen
)
# pad to length
inp = torch.cat(
[
inp, # [seq]
torch.zeros(padding_length - inplen, dtype=torch.long).to(
inp.device
), # [padding_length - seq]
],
dim=0,
)
inps.append(inp.unsqueeze(0))
contlens.append(cont)
inplens.append(inplen)
logits = self._model_call(torch.cat(inps, dim=0))
res_len += len(chunk)
if logits is not None:
multi_logits = F.log_softmax(logits, dim=-1) # [batch, seq, vocab]
for (cache_key, _, _), logits, inp, inplen, cont_toks in zip(
chunk, multi_logits, inps, inplens, contlens
):
contlen = len(cont_toks)
logits = logits[inplen - contlen : inplen].unsqueeze(
0
) # [1, seq, vocab]
greedy_tokens = logits.argmax(dim=-1)
# cont_toks :: [1, seq]
cont_toks = (
torch.tensor(cont_toks, dtype=torch.long)
.unsqueeze(0)
.to(multi_logits.device)
)
max_equal = (greedy_tokens == cont_toks).all()
logits = torch.gather(
logits, 2, cont_toks.unsqueeze(-1)
).squeeze(
-1
) # [1, seq]
answer = (float(logits.sum()), bool(max_equal))
# partial caching
if cache_key is not None:
self.cache_hook.add_partial(
"loglikelihood", cache_key, answer
)
res.append(answer)
# broadcast results to all ranks
if self.is_pipe_parallel:
src_rank = self.model.grid.stage_to_global(self.model.num_stages - 1)
if res:
logits_sums, max_equals = list(zip(*res))
logits_sums = torch.FloatTensor(logits_sums).cuda()
max_equals = torch.LongTensor(max_equals).cuda()
else:
logits_sums = torch.zeros(res_len, dtype=torch.float32).cuda()
max_equals = torch.zeros(res_len, dtype=torch.int64).cuda()
torch.distributed.broadcast(
tensor=logits_sums,
src=src_rank,
group=mpu.get_pipe_parallel_group(),
)
torch.distributed.broadcast(
tensor=max_equals, src=src_rank, group=mpu.get_pipe_parallel_group()
)
max_equals = [bool(i) for i in max_equals.tolist()]
logits_sums = logits_sums.tolist()
res = list(zip(logits_sums, max_equals))
self.model.module.train_mode() # set back to train mode
return reord.get_original(res)
def _dp_scatter(self, inps):
"""
Scatters the inputs to all data parallel ranks.
"""
batch_size = inps.shape[0]
padded = False
if batch_size % self.dp_world_size != 0:
# The last batch could potentially not fill the full batch size (if the dataset size is not divisible by batch size)
# In this case we pad the batch
padded_size = self.dp_world_size - (batch_size % self.dp_world_size)
print_rank_0(
f"WARNING: Batch size ({batch_size}) must be divisible by dp world size ({self.dp_world_size}). Padding inputs to {padded_size}."
)
inps = torch.cat(
[inps] + [inps[0:1, ...] for _ in range(padded_size)], dim=0
) # pad with first inp item
padded = True
assert (
inps.shape[0] % self.dp_world_size == 0
), f"batch size ({inps.shape[0]}) must be divisible by dp world size ({self.dp_world_size})"
# get a chunk for each data parallel rank
chunk_size = inps.shape[0] // self.dp_world_size
inps = inps[self.dp_rank * chunk_size : (self.dp_rank + 1) * chunk_size]
# make a dummy dataloader / iterator to pass to model
# we need to do this because deepspeed pipe parallel only takes an iterator
# in this format
return iter([{"text": F.pad(inps, pad=(0, 1))}]), padded
def _dp_gather(self, logits):
"""
Gather logits from all data parallel ranks
"""
if logits is not None:
tensor_list = [torch.zeros_like(logits) for _ in range(self.dp_world_size)]
torch.distributed.all_gather(
tensor_list, logits, group=mpu.get_data_parallel_group()
)
logits = torch.cat(tensor_list, dim=0)
return logits
def _model_call(self, inps):
batch_size = inps.shape[0]
# scatter inputs to all dp ranks:
inps, padded = self._dp_scatter(inps)
if self.neox_args.is_pipe_parallel:
# need these flags to stop deepspeed pipe parallel from hanging
self.model.first_output_send = True
self.model.pipe_recv_buf = None
_, logits = self._forward_step_fn(model=self.model, data_iterator=inps)
# gather outputs from all dp ranks:
logits = self._dp_gather(logits)
# if logits have been padded (normally just last item where batch size is unequal)
# restore to original shape
if padded and logits is not None:
logits = logits[:batch_size, ...]
return logits
def _model_generate(self, context, max_length, eos_token_id):
# Isn't used because we override `greedy_until``.
raise NotImplementedError()
@torch.no_grad()
def run_eval(
self,
eval_tasks=None,
num_fewshot=0,
bootstrap_iters=2,
description_dict=None,
use_cache=True,
name="neox",
limit=None
):
was_training = self.model.training
self.model.eval()
in_micro_batches = (
self.model.micro_batches
) # store input microbatches - we need to set to 1 during eval, but want to return to its original value after
self.model.micro_batches = 1
if eval_tasks is None:
eval_tasks = [
"lambada",
"piqa",
"hellaswag",
"winogrande",
"mathqa",
"pubmedqa",
]
# **HACK INCOMING**:
# first get task dict on local main rank
# the tasks are downloaded *as they are initialized*, and the downloads don't like multithreading.
# so we download them once on the local main rank, wait, and then initialize them on all other ranks, which *should* load from the cache.
if self.is_local_main:
task_dict = tasks.get_task_dict(eval_tasks)
# torch barrier
if torch.distributed.is_initialized():
torch.distributed.barrier()
task_dict = tasks.get_task_dict(eval_tasks)
lm = self
if use_cache:
# TODO(jon-tow): Append a subset of `neox_args` to the cache database
# name arg to distinguish model runs that use different configurations.
lm = base.CachingLM(lm, 'lm_cache/' + name + '.db')
results = evaluator.evaluate(
lm=lm,
task_dict=tasks.get_task_dict(eval_tasks),
description_dict=description_dict,
num_fewshot=num_fewshot,
limit=limit,
bootstrap_iters=bootstrap_iters,
)
results["config"] = {
"model": name,
"model_args": dataclasses.asdict(self.neox_args),
"num_fewshot": num_fewshot,
"batch_size": self.batch_size,
"device": str(self.device),
"no_cache": not use_cache,
"limit": limit,
"bootstrap_iters": bootstrap_iters,
"description_dict": description_dict
}
if was_training:
self.model.train()
self.model.micro_batches = in_micro_batches
return results
def run_eval_harness(
model,
forward_step_fn,
neox_args,
batch_size=None,
eval_tasks=None,
num_fewshot=0,
bootstrap_iters=2,
):
print_rank_0("Running evaluation harness...")
adapter = EvalHarnessAdapter(model, forward_step_fn, neox_args, batch_size)
return adapter.run_eval(
eval_tasks=eval_tasks, num_fewshot=num_fewshot, bootstrap_iters=bootstrap_iters
)
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment