Commit 704947b4 authored by Wes Brown's avatar Wes Brown

Clean up, better reporting.

parent cc02ad48
import numpy as np import numpy as np
import torch import torch
import mmap import mmap
import pickle
import concurrent import concurrent
from torch.utils import data from torch.utils import data
import pickle import pickle
......
from re import A
import torch
import torch.nn as nn import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
from pathlib import Path
from torch.utils import data from torch.utils import data
import math
import sys
from tqdm import tqdm
import time
import wandb import wandb
import numpy as np
from torch.utils.checkpoint import checkpoint as ck from torch.utils.checkpoint import checkpoint as ck
from math import log2, ceil
from basedformer import optimizer, lm_utils, dataset from basedformer import optimizer, lm_utils, dataset
from basedformer.utils import * from basedformer.utils import *
import glob
from transformers import AutoTokenizer from transformers import AutoTokenizer
from basedformer import sampling from basedformer import sampling
from icecream import ic
from termcolor import colored from termcolor import colored
gpu = "cuda" gpu = "cuda"
...@@ -26,6 +15,9 @@ if gpu != "cuda": ...@@ -26,6 +15,9 @@ if gpu != "cuda":
amp = torch.amp amp = torch.amp
scaler = torch.cuda.amp.GradScaler() scaler = torch.cuda.amp.GradScaler()
prompts = ["<|endoftext|>"]
def _init_weights(module): def _init_weights(module):
if isinstance(module, nn.Linear): if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=0.02) module.weight.data.normal_(mean=0.0, std=0.02)
...@@ -39,49 +31,21 @@ def _init_weights(module): ...@@ -39,49 +31,21 @@ def _init_weights(module):
module.bias.data.zero_() module.bias.data.zero_()
module.weight.data.fill_(1.0) module.weight.data.fill_(1.0)
def shift_tokens(x, amt, eps = 1e-5):
n, device = x.shape[1], x.device
cumsum = x.cumsum(dim = 1)
*x, x_pass = x.chunk(amt + 1, dim = -1)
*x_cumsum, _ = cumsum.chunk(amt + 1, dim = -1)
amts = 2 ** torch.arange(amt)
amts = amts.tolist()
shifts = []
denom = torch.arange(n, device = device)
for x_chunk, x_cumsum_chunk, amt in zip(x, x_cumsum, amts):
shifted_chunk = shift(x_cumsum_chunk, amt, dim = -2) - shift(x_cumsum_chunk, 2 * amt, dim = -2)
shifted_denom = shift(denom, amt, dim = -1) - shift(denom, 2 * amt, dim = -1)
shifted_denom = rearrange(shifted_denom, 'n -> () n ()')
normed_shifted_x = shifted_chunk / (shifted_denom + eps)
shifts.append(normed_shifted_x)
return torch.cat((*shifts, x_pass), dim = -1)
def discounted_cumsum(t, gamma): def shift(x, amt, dim=-1):
try: return F.pad(x, (*((0, 0) * (-dim - 1)), amt, -amt), value=0.)
from torch_discounted_cumsum import discounted_cumsum_left
except ImportError:
print('unable to import torch_discounted_cumsum - please run `pip install torch-discounted-cumsum`')
b, n, d = t.shape
t = rearrange(t, 'b n d -> (b d) n')
t = discounted_cumsum_left(t, gamma)
t = rearrange(t, '(b d) n -> b n d', b = b)
return t
def shift(x, amt, dim = -1):
return F.pad(x, (*((0, 0) * (-dim - 1)), amt, -amt), value = 0.)
class HyperNetworkGRU(nn.Module): class HyperNetworkGRU(nn.Module):
def __init__(self, config): def __init__(self, config):
super().__init__() super().__init__()
embed_dim = config["hidden_dim"] embed_dim = config["hidden_dim"]
self.linear1 = nn.Linear(embed_dim, embed_dim//8) self.linear1 = nn.Linear(embed_dim, embed_dim // 8)
self.gru = nn.GRU(embed_dim//8, embed_dim // 8, num_layers=1, bidirectional=False, batch_first=True) self.gru = nn.GRU(embed_dim // 8,
embed_dim // 8,
num_layers=1,
bidirectional=False,
batch_first=True)
self.linear2 = nn.Linear(embed_dim // 8, embed_dim) self.linear2 = nn.Linear(embed_dim // 8, embed_dim)
self.ln_1 = nn.LayerNorm(embed_dim // 8, eps=1e-5) self.ln_1 = nn.LayerNorm(embed_dim // 8, eps=1e-5)
self.activation = gelu_new self.activation = gelu_new
...@@ -90,47 +54,42 @@ class HyperNetworkGRU(nn.Module): ...@@ -90,47 +54,42 @@ class HyperNetworkGRU(nn.Module):
_init_weights(module) _init_weights(module)
for param in self.linear2.parameters(): for param in self.linear2.parameters():
param.data.normal_(mean=0.0, std=(0.02 / math.sqrt(2 * config["n_layer"]))) param.data.normal_(mean=0.0,
std=(0.02 / math.sqrt(2 * config["n_layer"])))
for param in self.gru.parameters(): for param in self.gru.parameters():
param.data.normal_(mean=0.0, std=(0.02 / math.sqrt(2 * config["n_layer"]))) param.data.normal_(mean=0.0,
std=(0.02 / math.sqrt(2 * config["n_layer"])))
def forward(self, x): def forward(self, x):
x = x.float() return ck(self.activation,
x = self.linear1(x) self.linear2(
x = self.gru(x)[0] self.ln_1(
x = self.ln_1(x) self.gru(
x = self.linear2(x) self.linear1(
x = ck(self.activation, x) x.float()))[0]))).bfloat16()
return x.bfloat16()
class HyperNetwork(nn.Module): class HyperNetwork(nn.Module):
def __init__(self, config): def __init__(self, config):
super().__init__() super().__init__()
embed_dim = config["hidden_dim"] embed_dim = config["hidden_dim"]
self.linear = nn.Linear(embed_dim, embed_dim//4, bias=True) self.linear = nn.Linear(embed_dim, embed_dim // 4, bias=True)
self.linear2 = nn.Linear(embed_dim//4, embed_dim, bias=True) self.linear2 = nn.Linear(embed_dim // 4, embed_dim, bias=True)
self.activation = torch.nn.functional.gelu self.activation = torch.nn.functional.gelu
self.num_shifts = ceil(log2(2048)) - 1
#self.linear.weight.data.normal_(mean=0.0, std=0.02)
for module in self.modules(): for module in self.modules():
_init_weights(module) _init_weights(module)
for param in self.linear2.parameters(): for param in self.linear2.parameters():
param.data.normal_(mean=0.0, std=(0.02 / math.sqrt(2 * config["n_layer"]))) param.data.normal_(mean=0.0,
#state = self.state_dict() std=(0.02 / math.sqrt(2 * config["n_layer"])))
#for k in state:
# state[k] = state[k] * 1 / math.sqrt(2 * config["n_layer"])
#self.load_state_dict(state)
def forward(self, x): def forward(self, x):
x = x.float() x = self.linear2(
#x = shift_tokens(x, self.num_shifts) ck(self.activation,
x = self.linear(x) self.linear(x.float())))
x = ck(self.activation, x) return x.mul(torch.sigmoid(x)).bfloat16()
x = self.linear2(x)
x = x.mul(torch.sigmoid(x))
return x.bfloat16()
class HyperNetworkSingle(nn.Module): class HyperNetworkSingle(nn.Module):
def __init__(self, config): def __init__(self, config):
...@@ -138,32 +97,30 @@ class HyperNetworkSingle(nn.Module): ...@@ -138,32 +97,30 @@ class HyperNetworkSingle(nn.Module):
embed_dim = config["hidden_dim"] embed_dim = config["hidden_dim"]
self.linear = nn.Linear(embed_dim, embed_dim, bias=True) self.linear = nn.Linear(embed_dim, embed_dim, bias=True)
self.activation = gelu_new self.activation = gelu_new
#self.linear.weight.data.normal_(mean=0.0, std=0.02) # self.linear.weight.data.normal_(mean=0.0, std=0.02)
for module in self.modules(): for module in self.modules():
_init_weights(module) _init_weights(module)
for param in self.linear.parameters(): for param in self.linear.parameters():
param.data.normal_(mean=0.0, std=(0.02 / math.sqrt(2 * config["n_layer"]))) param.data.normal_(mean=0.0,
#state = self.state_dict() std=(0.02 / math.sqrt(2 * config["n_layer"])))
#for k in state: # state = self.state_dict()
# for k in state:
# state[k] = state[k] * 1 / math.sqrt(2 * config["n_layer"]) # state[k] = state[k] * 1 / math.sqrt(2 * config["n_layer"])
#self.load_state_dict(state) # self.load_state_dict(state)
def forward(self, x): def forward(self, x):
x = x.float() x = self.linear(x.float())
#x = shift_tokens(x, self.num_shifts) return x.mul(torch.sigmoid(x)).bfloat16()
x = self.linear(x)
x = x.mul(torch.sigmoid(x))
return x.bfloat16()
tokenizer = AutoTokenizer.from_pretrained('gpt2') tokenizer = AutoTokenizer.from_pretrained('gpt2')
@torch.no_grad() @torch.no_grad()
def sample(prompt, n_tokens, bsz, hypernetwork=None): def sample(prompt, n_tokens, bsz, hypernetwork=None, step=0):
torch.seed() torch.seed()
tokens = tokenizer.encode(prompt) tokens = tokenizer.encode(prompt)
#print("Prompt:")
#for x in range(len(tokens)):
# print(tokenizer.decode([tokens[x]]), end=" | ")
tokens = torch.LongTensor(tokens).unsqueeze(0).to(gpu) tokens = torch.LongTensor(tokens).unsqueeze(0).to(gpu)
tokens = [tokens] * bsz tokens = [tokens] * bsz
tokens = torch.cat(tokens, dim=0) tokens = torch.cat(tokens, dim=0)
...@@ -178,31 +135,52 @@ def sample(prompt, n_tokens, bsz, hypernetwork=None): ...@@ -178,31 +135,52 @@ def sample(prompt, n_tokens, bsz, hypernetwork=None):
"temp": 0.8, "temp": 0.8,
} }
ops_list = [ops] * bsz ops_list = [ops] * bsz
tokens_generated = sampling.generate(model.forward, tokens, n_tokens, ops_list=ops_list, hypernetwork=hypernetwork, non_deterministic=True) tokens_generated = sampling.generate(model.forward,
vanilla_tokens_generated = sampling.generate(model.forward, tokens, n_tokens, ops_list=ops_list, hypernetwork=None) tokens,
n_tokens,
ops_list=ops_list,
hypernetwork=hypernetwork,
non_deterministic=True)
vanilla_tokens_generated = sampling.generate(model.forward,
tokens,
n_tokens,
ops_list=ops_list,
hypernetwork=None)
tokens_generated = tokenizer.batch_decode(tokens_generated.cpu().numpy()) tokens_generated = tokenizer.batch_decode(tokens_generated.cpu().numpy())
vanilla_tokens_generated = tokenizer.batch_decode(vanilla_tokens_generated.cpu().numpy()) vanilla_tokens_generated = tokenizer.batch_decode(
### send to wandb vanilla_tokens_generated.cpu().numpy())
columns = ["Prompt", "Generated Text", "Vanilla Model"]
data = [] data = []
for x in range(len(tokens_generated)): for x in range(len(tokens_generated)):
data.append([prompt, str(tokens_generated[x]), str(vanilla_tokens_generated[x])]) data.append([step,
prompt,
str(tokens_generated[x]),
str(vanilla_tokens_generated[x])])
for gen in tokens_generated: return data
print(colored("==========================================================", "red"))
print(colored(gen, "green")) def report_wandb(data):
print(colored("==========================================================", "red")) columns = ["Step", "Prompt", "Generated Text", "Vanilla Model"]
wandb.log({"Generations": wandb.Table(data=data, columns=columns)}) wandb.log({"Generations": wandb.Table(data=data, columns=columns)})
def report_console(data):
for gen in data[3]:
print(colored("======================================================",
"red"))
print(colored(gen, "green"))
print(colored("======================================================",
"red"))
# we need 250 batch size to train the small GPT. # we need 250 batch size to train the small GPT.
train_config = { train_config = {
"data_path": "dataset/enwik9-gpt2-2049.map", "data_path": "dataset/cassandra.map",
"save_path": "models/enwik9-sigurdv4-hypernet2", "save_path": "models/sigurdv4-cassandra-hypernet2",
"lm_path": "pretrained/sigurdv4", "lm_path": "pretrained/sigurdv4",
"optimizer": "adamw", "optimizer": "adamw",
"masked_softmax_fusion": False, "masked_softmax_fusion": False,
"do_save": True, "do_save": True,
"run_name": "gptj-6b-enwik9-6b-postln-bf16-2e-4-4bsz-every5layer", "run_name": "sigurdv4-cassandra-6b-postln-bf16-2e-4-4bsz-every5layer",
"lr": 2e-4, "lr": 2e-4,
"end_lr": 2e-4, "end_lr": 2e-4,
"warmup_steps": 50, "warmup_steps": 50,
...@@ -220,7 +198,6 @@ gas = train_config["gas"] ...@@ -220,7 +198,6 @@ gas = train_config["gas"]
Path(train_config["save_path"]).mkdir(parents=True, exist_ok=True) Path(train_config["save_path"]).mkdir(parents=True, exist_ok=True)
model = lm_utils.load_from_path("pretrained/sigurdv4").to(gpu).bfloat16() model = lm_utils.load_from_path("pretrained/sigurdv4").to(gpu).bfloat16()
for param in model.parameters(): for param in model.parameters():
param.requires_grad = False param.requires_grad = False
...@@ -233,26 +210,37 @@ hypernetwork = HyperNetworkSingle(model.config).to(gpu).float() ...@@ -233,26 +210,37 @@ hypernetwork = HyperNetworkSingle(model.config).to(gpu).float()
for param in hypernetwork.parameters(): for param in hypernetwork.parameters():
param.requires_grad = True param.requires_grad = True
cp_list = sorted(os.listdir(train_config["save_path"]), key=lambda x: int(x.split("_")[-1])) cp_list = sorted(os.listdir(train_config["save_path"]),
last_cp = Path(train_config["save_path"]) / cp_list[-1] if len(cp_list) > 0 else None key=lambda x: int(x.split("_")[-1]))
last_cp = Path(train_config["save_path"]) / cp_list[-1] if len(
cp_list) > 0 else None
print(last_cp) print(last_cp)
if last_cp: if last_cp:
print("Loading from step {}".format(cp_list[-1].split("_")[-1])) print("Loading from step {}".format(cp_list[-1].split("_")[-1]))
hypernetwork.load_state_dict(torch.load(last_cp / "hyper.pt")) hypernetwork.load_state_dict(torch.load(last_cp / "hyper.pt"))
opt = optimizer.BasedOptimizer.load(hypernetwork.parameters(), last_cp / "opt") opt = optimizer.BasedOptimizer.load(hypernetwork.parameters(),
last_cp / "opt")
else: else:
opt = optimizer.BasedOptimizer(hypernetwork.parameters(), train_config, train_config["optimizer"]) opt = optimizer.BasedOptimizer(hypernetwork.parameters(),
train_config,
train_config["optimizer"])
# TODO: Add load, add evals, add FP16 AMP, and Data Parallel, outputting hidden states from the get_logits function. # TODO: Add load, add evals, add FP16 AMP, and Data Parallel, outputting hidden
# states from the get_logits function.
print(opt.curr_step) print(opt.curr_step)
train_dataset = dataset.ShardedDataset(2049, train_config["data_path"]) train_dataset = dataset.ShardedDataset(2049, train_config["data_path"])
if last_cp: if last_cp:
train_dataset.skip = opt.curr_step * bs * gas train_dataset.skip = opt.curr_step * bs * gas
train_loader = data.DataLoader(train_dataset, batch_size=bs*gas, shuffle=False, num_workers=0, ) train_loader = data.DataLoader(train_dataset,
wandb.init(project="hypernetwork-tests", name=train_config["run_name"], config={**train_config, **model.config}) batch_size=bs * gas,
shuffle=False,
num_workers=0)
wandb.init(project="hypernetwork-tests",
name=train_config["run_name"],
config={**train_config, **model.config})
if last_cp: if last_cp:
curr_step = opt.curr_step curr_step = opt.curr_step
...@@ -260,21 +248,22 @@ else: ...@@ -260,21 +248,22 @@ else:
curr_step = 0 curr_step = 0
t = tqdm(train_loader, initial=curr_step) t = tqdm(train_loader, initial=curr_step)
sample_data = []
#sample("<|endoftext|>", 500, 3, hypernetwork=hypernetwork)
for input_ids, labels in t: for input_ids, labels in t:
timex = time.perf_counter() timex = time.perf_counter()
input_ids = input_ids.to(gpu) input_ids = input_ids.to(gpu)
labels = labels.to(gpu) labels = labels.to(gpu)
loss = 0 loss = 0
for x in range(train_config["gas"]): for x in range(train_config["gas"]):
with amp.autocast(enabled=train_config["amp"], dtype=torch.float16): with amp.autocast(enabled=train_config["amp"],
logits, _ = model(input_ids[x*bs:(x+1)*bs, :].to(gpu), hypernetwork=hypernetwork, act_ck=True) dtype=torch.float16):
#print(tokenizer.decode(input_ids[x*bs:(x+1)*bs, :][0])) logits, _ = model(input_ids[x * bs:(x + 1) * bs, :].to(gpu),
hypernetwork=hypernetwork,
act_ck=True)
# print(tokenizer.decode(input_ids[x*bs:(x+1)*bs, :][0]))
logits = logits.view(-1, logits.shape[-1]) logits = logits.view(-1, logits.shape[-1])
gas_labels = labels[x*bs:(x+1)*bs, :].contiguous() gas_labels = labels[x * bs:(x + 1) * bs, :].contiguous()
gas_labels = gas_labels.view(-1) gas_labels = gas_labels.view(-1)
gas_loss = F.cross_entropy(logits, gas_labels) gas_loss = F.cross_entropy(logits, gas_labels)
...@@ -301,7 +290,8 @@ for input_ids, labels in t: ...@@ -301,7 +290,8 @@ for input_ids, labels in t:
sec_per_step = (time.perf_counter() - timex) sec_per_step = (time.perf_counter() - timex)
step_per_sec = (1. / sec_per_step) step_per_sec = (1. / sec_per_step)
tokens_per_sec = (step_per_sec * 2048) * bs * gas tokens_per_sec = (step_per_sec * 2048) * bs * gas
t.set_description(f"{step_per_sec:.2f} steps/s, {sec_per_step:.2f}s/step, {tokens_per_sec:.2f}tokens/s, loss={loss:.4f}") t.set_description(f"{step_per_sec:.2f} steps/s, {sec_per_step:.2f}s/step,"
+ f"{tokens_per_sec:.2f}tokens/s, loss={loss:.4f}")
wandb.log( wandb.log(
{ {
"train/loss": loss, "train/loss": loss,
...@@ -313,15 +303,20 @@ for input_ids, labels in t: ...@@ -313,15 +303,20 @@ for input_ids, labels in t:
}, },
step=curr_step) step=curr_step)
if train_config["do_save"] and curr_step % train_config["save_every"] == 0 and curr_step != 0: if train_config["do_save"] and curr_step % train_config[
"save_every"] == 0 and curr_step != 0:
save_folder = Path(train_config["save_path"]) / f"step_{curr_step}" save_folder = Path(train_config["save_path"]) / f"step_{curr_step}"
save_folder.mkdir(parents=True, exist_ok=True) save_folder.mkdir(parents=True, exist_ok=True)
torch.save(hypernetwork.state_dict(), save_folder / "hyper.pt") torch.save(hypernetwork.state_dict(), save_folder / "hyper.pt")
opt.save(save_folder / "opt") opt.save(save_folder / "opt")
print(f"Saved model at step {curr_step}") print(f"\nSaved model at step {curr_step}")
if curr_step % train_config["eval_every"] == 0 and curr_step != 0: if curr_step % train_config["eval_every"] == 0 and curr_step != 0:
print("") for prompt in prompts:
sample("<|endoftext|>", 500, 3, hypernetwork=hypernetwork) sampled = sample(prompt, 500, 3, hypernetwork=hypernetwork)
curr_step += 1 print(f"PROMPT:\n{prompt}")
report_console(sampled)
sample_data = sample_data + sampled
report_wandb(sample_data)
curr_step += 1
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment