Commit cda27514 authored by David Reid's avatar David Reid

Add ma_hpf with support for configuring the number of poles.

parent 2e1869ab
......@@ -1762,6 +1762,33 @@ ma_result ma_hpf2_process_pcm_frames(ma_hpf2* pHPF, void* pFramesOut, const void
ma_uint32 ma_hpf2_get_latency(ma_hpf2* pHPF);
typedef struct
{
ma_format format;
ma_uint32 channels;
ma_uint32 sampleRate;
double cutoffFrequency;
ma_uint32 poles; /* If set to 0, will be treated as a passthrough (no filtering will be applied). */
} ma_hpf_config;
ma_hpf_config ma_hpf_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency, ma_uint32 poles);
typedef struct
{
ma_format format;
ma_uint32 channels;
ma_uint32 hpf2Count;
ma_uint32 hpf1Count;
ma_hpf2 hpf2[MA_MAX_FILTER_POLES/2];
ma_hpf1 hpf1[1];
} ma_hpf;
ma_result ma_hpf_init(const ma_hpf_config* pConfig, ma_hpf* pHPF);
ma_result ma_hpf_reinit(const ma_hpf_config* pConfig, ma_hpf* pHPF);
ma_result ma_hpf_process_pcm_frames(ma_hpf* pHPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount);
ma_uint32 ma_hpf_get_latency(ma_hpf* pHPF);
/**************************************************************************************************************************************************************
Band-Pass Filtering
......@@ -30074,6 +30101,16 @@ ma_result ma_hpf2_reinit(const ma_hpf2_config* pConfig, ma_hpf2* pHPF)
return MA_SUCCESS;
}
static MA_INLINE void ma_hpf2_process_pcm_frame_s16(ma_hpf2* pHPF, ma_int16* pFrameOut, const ma_int16* pFrameIn)
{
ma_biquad_process_pcm_frame_s16(&pHPF->bq, pFrameOut, pFrameIn);
}
static MA_INLINE void ma_hpf2_process_pcm_frame_f32(ma_hpf2* pHPF, float* pFrameOut, const float* pFrameIn)
{
ma_biquad_process_pcm_frame_f32(&pHPF->bq, pFrameOut, pFrameIn);
}
ma_result ma_hpf2_process_pcm_frames(ma_hpf2* pHPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount)
{
if (pHPF == NULL) {
......@@ -30093,6 +30130,206 @@ ma_uint32 ma_hpf2_get_latency(ma_hpf2* pHPF)
}
ma_hpf_config ma_hpf_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency, ma_uint32 poles)
{
ma_hpf_config config;
MA_ZERO_OBJECT(&config);
config.format = format;
config.channels = channels;
config.sampleRate = sampleRate;
config.cutoffFrequency = cutoffFrequency;
config.poles = ma_min(poles, MA_MAX_FILTER_POLES);
return config;
}
static ma_result ma_hpf_reinit__internal(const ma_hpf_config* pConfig, ma_hpf* pHPF, ma_bool32 isNew)
{
ma_result result;
ma_uint32 hpf2Count;
ma_uint32 hpf1Count;
ma_uint32 ihpf2;
ma_uint32 ihpf1;
if (pHPF == NULL || pConfig == NULL) {
return MA_INVALID_ARGS;
}
/* Only supporting f32 and s16. */
if (pConfig->format != ma_format_f32 && pConfig->format != ma_format_s16) {
return MA_INVALID_ARGS;
}
/* The format cannot be changed after initialization. */
if (pHPF->format != ma_format_unknown && pHPF->format != pConfig->format) {
return MA_INVALID_OPERATION;
}
/* The channel count cannot be changed after initialization. */
if (pHPF->channels != 0 && pHPF->channels != pConfig->channels) {
return MA_INVALID_OPERATION;
}
if (pConfig->poles > MA_MAX_FILTER_POLES) {
return MA_INVALID_ARGS;
}
hpf2Count = pConfig->poles / 2;
hpf1Count = pConfig->poles % 2;
MA_ASSERT(hpf2Count <= ma_countof(pHPF->hpf2));
MA_ASSERT(hpf1Count <= ma_countof(pHPF->hpf1));
/* The pole count can't change between reinits. */
if (!isNew) {
if (pHPF->hpf2Count != hpf2Count || pHPF->hpf1Count != hpf1Count) {
return MA_INVALID_OPERATION;
}
}
for (ihpf2 = 0; ihpf2 < hpf2Count; ihpf2 += 1) {
ma_hpf2_config hpf2Config = ma_hpf2_config_init(pConfig->format, pConfig->channels, pConfig->sampleRate, pConfig->cutoffFrequency);
if (isNew) {
result = ma_hpf2_init(&hpf2Config, &pHPF->hpf2[ihpf2]);
} else {
result = ma_hpf2_reinit(&hpf2Config, &pHPF->hpf2[ihpf2]);
}
if (result != MA_SUCCESS) {
return result;
}
}
for (ihpf1 = 0; ihpf1 < hpf1Count; ihpf1 += 1) {
ma_hpf1_config hpf1Config = ma_hpf1_config_init(pConfig->format, pConfig->channels, pConfig->sampleRate, pConfig->cutoffFrequency);
if (isNew) {
result = ma_hpf1_init(&hpf1Config, &pHPF->hpf1[ihpf1]);
} else {
result = ma_hpf1_reinit(&hpf1Config, &pHPF->hpf1[ihpf1]);
}
if (result != MA_SUCCESS) {
return result;
}
}
pHPF->hpf2Count = hpf2Count;
pHPF->hpf1Count = hpf1Count;
pHPF->format = pConfig->format;
pHPF->channels = pConfig->channels;
return MA_SUCCESS;
}
ma_result ma_hpf_init(const ma_hpf_config* pConfig, ma_hpf* pHPF)
{
if (pHPF == NULL) {
return MA_INVALID_ARGS;
}
MA_ZERO_OBJECT(pHPF);
if (pConfig == NULL) {
return MA_INVALID_ARGS;
}
return ma_hpf_reinit__internal(pConfig, pHPF, /*isNew*/MA_TRUE);
}
ma_result ma_hpf_reinit(const ma_hpf_config* pConfig, ma_hpf* pHPF)
{
return ma_hpf_reinit__internal(pConfig, pHPF, /*isNew*/MA_FALSE);
}
ma_result ma_hpf_process_pcm_frames(ma_hpf* pHPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount)
{
ma_result result;
ma_uint32 ihpf2;
ma_uint32 ihpf1;
if (pHPF == NULL) {
return MA_INVALID_ARGS;
}
/* Faster path for in-place. */
if (pFramesOut == pFramesIn) {
for (ihpf2 = 0; ihpf2 < pHPF->hpf2Count; ihpf2 += 1) {
result = ma_hpf2_process_pcm_frames(&pHPF->hpf2[ihpf2], pFramesOut, pFramesOut, frameCount);
if (result != MA_SUCCESS) {
return result;
}
}
for (ihpf1 = 0; ihpf1 < pHPF->hpf1Count; ihpf1 += 1) {
result = ma_hpf1_process_pcm_frames(&pHPF->hpf1[ihpf1], pFramesOut, pFramesOut, frameCount);
if (result != MA_SUCCESS) {
return result;
}
}
}
/* Slightly slower path for copying. */
if (pFramesOut != pFramesIn) {
ma_uint32 iFrame;
/* */ if (pHPF->format == ma_format_f32) {
/* */ float* pFramesOutF32 = ( float*)pFramesOut;
const float* pFramesInF32 = (const float*)pFramesIn;
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
MA_COPY_MEMORY(pFramesOutF32, pFramesInF32, ma_get_bytes_per_frame(pHPF->format, pHPF->channels));
for (ihpf2 = 0; ihpf2 < pHPF->hpf2Count; ihpf2 += 1) {
ma_hpf2_process_pcm_frame_f32(&pHPF->hpf2[ihpf2], pFramesOutF32, pFramesOutF32);
}
for (ihpf1 = 0; ihpf1 < pHPF->hpf1Count; ihpf1 += 1) {
ma_hpf1_process_pcm_frame_f32(&pHPF->hpf1[ihpf1], pFramesOutF32, pFramesOutF32);
}
pFramesOutF32 += pHPF->channels;
pFramesInF32 += pHPF->channels;
}
} else if (pHPF->format == ma_format_s16) {
/* */ ma_int16* pFramesOutS16 = ( ma_int16*)pFramesOut;
const ma_int16* pFramesInS16 = (const ma_int16*)pFramesIn;
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
MA_COPY_MEMORY(pFramesOutS16, pFramesInS16, ma_get_bytes_per_frame(pHPF->format, pHPF->channels));
for (ihpf2 = 0; ihpf2 < pHPF->hpf2Count; ihpf2 += 1) {
ma_hpf2_process_pcm_frame_s16(&pHPF->hpf2[ihpf2], pFramesOutS16, pFramesOutS16);
}
for (ihpf1 = 0; ihpf1 < pHPF->hpf1Count; ihpf1 += 1) {
ma_hpf1_process_pcm_frame_s16(&pHPF->hpf1[ihpf1], pFramesOutS16, pFramesOutS16);
}
pFramesOutS16 += pHPF->channels;
pFramesInS16 += pHPF->channels;
}
} else {
MA_ASSERT(MA_FALSE);
return MA_INVALID_OPERATION; /* Should never hit this. */
}
}
return MA_SUCCESS;
}
ma_uint32 ma_hpf_get_latency(ma_hpf* pHPF)
{
if (pHPF == NULL) {
return 0;
}
return pHPF->hpf2Count*2 + pHPF->hpf1Count;
}
/**************************************************************************************************************************************************************
Band-Pass Filtering
......@@ -60,7 +60,7 @@ ma_result test_hpf1__f32(const char* pInputFilePath)
ma_result test_hpf1__s16(const char* pInputFilePath)
{
return test_hpf1__by_format(pInputFilePath, "output/hpf1_s16.wav", ma_format_f32);
return test_hpf1__by_format(pInputFilePath, "output/hpf1_s16.wav", ma_format_s16);
}
......@@ -120,9 +120,70 @@ ma_result test_hpf2__f32(const char* pInputFilePath)
ma_result test_hpf2__s16(const char* pInputFilePath)
{
return test_hpf2__by_format(pInputFilePath, "output/hpf2_s16.wav", ma_format_f32);
return test_hpf2__by_format(pInputFilePath, "output/hpf2_s16.wav", ma_format_s16);
}
ma_result test_hpf3__by_format(const char* pInputFilePath, const char* pOutputFilePath, ma_format format)
{
ma_result result;
ma_decoder decoder;
drwav wav;
ma_hpf_config hpfConfig;
ma_hpf hpf;
printf(" %s\n", pOutputFilePath);
result = hpf_init_decoder_and_encoder(pInputFilePath, pOutputFilePath, format, &decoder, &wav);
if (result != MA_SUCCESS) {
return result;
}
hpfConfig = ma_hpf_config_init(decoder.outputFormat, decoder.outputChannels, decoder.outputSampleRate, 2000, 3);
result = ma_hpf_init(&hpfConfig, &hpf);
if (result != MA_SUCCESS) {
ma_decoder_uninit(&decoder);
drwav_uninit(&wav);
return result;
}
for (;;) {
ma_uint8 tempIn[4096];
ma_uint8 tempOut[4096];
ma_uint64 tempCapIn = sizeof(tempIn) / ma_get_bytes_per_frame(decoder.outputFormat, decoder.outputChannels);
ma_uint64 tempCapOut = sizeof(tempOut) / ma_get_bytes_per_frame(decoder.outputFormat, decoder.outputChannels);
ma_uint64 framesToRead;
ma_uint64 framesJustRead;
framesToRead = ma_min(tempCapIn, tempCapOut);
framesJustRead = ma_decoder_read_pcm_frames(&decoder, tempIn, framesToRead);
/* Filter */
ma_hpf_process_pcm_frames(&hpf, tempOut, tempIn, framesJustRead);
/* Write to the WAV file. */
drwav_write_pcm_frames(&wav, framesJustRead, tempOut);
if (framesJustRead < framesToRead) {
break;
}
}
drwav_uninit(&wav);
return MA_SUCCESS;
}
ma_result test_hpf3__f32(const char* pInputFilePath)
{
return test_hpf3__by_format(pInputFilePath, "output/hpf3_f32.wav", ma_format_f32);
}
ma_result test_hpf3__s16(const char* pInputFilePath)
{
return test_hpf3__by_format(pInputFilePath, "output/hpf3_s16.wav", ma_format_s16);
}
int test_entry__hpf(int argc, char** argv)
{
ma_result result;
......@@ -158,6 +219,18 @@ int test_entry__hpf(int argc, char** argv)
hasError = MA_TRUE;
}
result = test_hpf3__f32(pInputFilePath);
if (result != MA_SUCCESS) {
hasError = MA_TRUE;
}
result = test_hpf3__s16(pInputFilePath);
if (result != MA_SUCCESS) {
hasError = MA_TRUE;
}
if (hasError) {
return -1;
} else {
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment