Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Sign in / Register
Toggle navigation
M
miniaudio
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Locked Files
Issues
0
Issues
0
List
Boards
Labels
Service Desk
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Security & Compliance
Security & Compliance
Dependency List
License Compliance
Packages
Packages
List
Container Registry
Analytics
Analytics
CI / CD
Code Review
Insights
Issues
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
MyCard
miniaudio
Commits
cbcf6f6c
Commit
cbcf6f6c
authored
Jan 26, 2020
by
David Reid
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Early work on new channel converter.
parent
5aff4af6
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
581 additions
and
8 deletions
+581
-8
miniaudio.h
miniaudio.h
+2
-2
research/ma_data_converter.h
research/ma_data_converter.h
+579
-6
No files found.
miniaudio.h
View file @
cbcf6f6c
...
...
@@ -30773,7 +30773,7 @@ float g_maChannelPlaneRatios[MA_CHANNEL_POSITION_COUNT][6] = {
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_31 */
};
float ma_calculate_channel_position_
plan
ar_weight(ma_channel channelPositionA, ma_channel channelPositionB)
float ma_calculate_channel_position_
rectangul
ar_weight(ma_channel channelPositionA, ma_channel channelPositionB)
{
/*
Imagine the following simplified example: You have a single input speaker which is the front/left speaker which you want to convert to
...
...
@@ -30821,7 +30821,7 @@ float ma_channel_router__calculate_input_channel_planar_weight(const ma_channel_
ma_assert(pRouter != NULL);
(void)pRouter;
return ma_calculate_channel_position_
plan
ar_weight(channelPositionIn, channelPositionOut);
return ma_calculate_channel_position_
rectangul
ar_weight(channelPositionIn, channelPositionOut);
}
ma_bool32 ma_channel_router__is_spatial_channel_position(const ma_channel_router* pRouter, ma_channel channelPosition)
research/ma_data_converter.h
View file @
cbcf6f6c
...
...
@@ -5,6 +5,44 @@
#include "ma_resampler.h"
typedef
struct
{
ma_format
format
;
ma_uint32
channelsIn
;
ma_uint32
channelsOut
;
ma_channel
channelMapIn
[
MA_MAX_CHANNELS
];
ma_channel
channelMapOut
[
MA_MAX_CHANNELS
];
ma_channel_mix_mode
mixingMode
;
float
weights
[
MA_MAX_CHANNELS
][
MA_MAX_CHANNELS
];
/* [in][out]. Only used when mixingMode is set to ma_channel_mix_mode_custom_weights. */
}
ma_channel_converter_config
;
ma_channel_converter_config
ma_channel_converter_config_init
(
ma_format
format
,
ma_uint32
channelsIn
,
const
ma_channel
channelMapIn
[
MA_MAX_CHANNELS
],
ma_uint32
channelsOut
,
const
ma_channel
channelMapOut
[
MA_MAX_CHANNELS
],
ma_channel_mix_mode
mixingMode
);
typedef
struct
{
ma_format
format
;
ma_uint32
channelsIn
;
ma_uint32
channelsOut
;
ma_channel
channelMapIn
[
MA_MAX_CHANNELS
];
ma_channel
channelMapOut
[
MA_MAX_CHANNELS
];
ma_channel_mix_mode
mixingMode
;
union
{
float
f32
[
MA_MAX_CHANNELS
][
MA_MAX_CHANNELS
];
ma_int32
s16
[
MA_MAX_CHANNELS
][
MA_MAX_CHANNELS
];
}
weights
;
ma_bool32
isPassthrough
:
1
;
ma_bool32
isSimpleShuffle
:
1
;
ma_bool32
isSimpleMonoExpansion
:
1
;
ma_bool32
isStereoToMono
:
1
;
ma_uint8
shuffleTable
[
MA_MAX_CHANNELS
];
}
ma_channel_converter
;
ma_result
ma_channel_converter_init
(
const
ma_channel_converter_config
*
pConfig
,
ma_channel_converter
*
pConverter
);
void
ma_channel_converter_uninit
(
ma_channel_converter
*
pConverter
);
ma_result
ma_channel_converter_process_pcm_frames
(
ma_channel_converter
*
pConverter
,
void
*
pFramesOut
,
const
void
*
pFramesIn
,
ma_uint64
frameCount
);
typedef
struct
{
ma_format
formatIn
;
...
...
@@ -61,6 +99,541 @@ ma_uint64 ma_data_converter_get_output_latency(ma_data_converter* pConverter);
#define MA_DATA_CONVERTER_STACK_BUFFER_SIZE 4096
#endif
#ifndef MA_CHANNEL_CONVERTER_FIXED_POINT_SHIFT
#define MA_CHANNEL_CONVERTER_FIXED_POINT_SHIFT 12
#endif
ma_channel_converter_config
ma_channel_converter_config_init
(
ma_format
format
,
ma_uint32
channelsIn
,
const
ma_channel
channelMapIn
[
MA_MAX_CHANNELS
],
ma_uint32
channelsOut
,
const
ma_channel
channelMapOut
[
MA_MAX_CHANNELS
],
ma_channel_mix_mode
mixingMode
)
{
ma_channel_converter_config
config
;
MA_ZERO_OBJECT
(
&
config
);
config
.
format
=
format
;
config
.
channelsIn
=
channelsIn
;
config
.
channelsOut
=
channelsOut
;
ma_channel_map_copy
(
config
.
channelMapIn
,
channelMapIn
,
channelsIn
);
ma_channel_map_copy
(
config
.
channelMapOut
,
channelMapOut
,
channelsOut
);
config
.
mixingMode
=
mixingMode
;
return
config
;
}
static
ma_int32
ma_channel_converter_float_to_fp
(
float
x
)
{
return
(
ma_int32
)(
x
*
(
1
<<
MA_CHANNEL_CONVERTER_FIXED_POINT_SHIFT
));
}
static
ma_bool32
ma_is_spatial_channel_position
(
ma_channel
channelPosition
)
{
int
i
;
if
(
channelPosition
==
MA_CHANNEL_NONE
||
channelPosition
==
MA_CHANNEL_MONO
||
channelPosition
==
MA_CHANNEL_LFE
)
{
return
MA_FALSE
;
}
for
(
i
=
0
;
i
<
6
;
++
i
)
{
/* Each side of a cube. */
if
(
g_maChannelPlaneRatios
[
channelPosition
][
i
]
!=
0
)
{
return
MA_TRUE
;
}
}
return
MA_FALSE
;
}
ma_result
ma_channel_converter_init
(
const
ma_channel_converter_config
*
pConfig
,
ma_channel_converter
*
pConverter
)
{
ma_uint32
iChannelIn
;
ma_uint32
iChannelOut
;
if
(
pConverter
==
NULL
)
{
return
MA_INVALID_ARGS
;
}
MA_ZERO_OBJECT
(
pConverter
);
if
(
pConfig
==
NULL
)
{
return
MA_INVALID_ARGS
;
}
if
(
!
ma_channel_map_valid
(
pConfig
->
channelsIn
,
pConfig
->
channelMapIn
))
{
return
MA_INVALID_ARGS
;
/* Invalid input channel map. */
}
if
(
!
ma_channel_map_valid
(
pConfig
->
channelsOut
,
pConfig
->
channelMapOut
))
{
return
MA_INVALID_ARGS
;
/* Invalid output channel map. */
}
if
(
pConfig
->
format
!=
ma_format_s16
&&
pConfig
->
format
!=
ma_format_f32
)
{
return
MA_INVALID_ARGS
;
/* Invalid format. */
}
pConverter
->
format
=
pConfig
->
format
;
pConverter
->
channelsIn
=
pConfig
->
channelsIn
;
pConverter
->
channelsOut
=
pConfig
->
channelsOut
;
ma_channel_map_copy
(
pConverter
->
channelMapIn
,
pConfig
->
channelMapIn
,
pConfig
->
channelsIn
);
ma_channel_map_copy
(
pConverter
->
channelMapOut
,
pConfig
->
channelMapOut
,
pConfig
->
channelsOut
);
pConverter
->
mixingMode
=
pConfig
->
mixingMode
;
for
(
iChannelIn
=
0
;
iChannelIn
<
pConverter
->
channelsIn
;
iChannelIn
+=
1
)
{
for
(
iChannelOut
=
0
;
iChannelOut
<
pConverter
->
channelsOut
;
++
iChannelOut
)
{
if
(
pConverter
->
format
==
ma_format_s16
)
{
pConverter
->
weights
.
f32
[
iChannelIn
][
iChannelOut
]
=
pConfig
->
weights
[
iChannelIn
][
iChannelOut
];
}
else
{
pConverter
->
weights
.
s16
[
iChannelIn
][
iChannelOut
]
=
ma_channel_converter_float_to_fp
(
pConfig
->
weights
[
iChannelIn
][
iChannelOut
]);
}
}
}
/* If the input and output channels and channel maps are the same we should use a passthrough. */
if
(
pConverter
->
channelsIn
==
pConverter
->
channelsOut
)
{
if
(
ma_channel_map_equal
(
pConverter
->
channelsIn
,
pConverter
->
channelMapIn
,
pConverter
->
channelMapOut
))
{
pConverter
->
isPassthrough
=
MA_TRUE
;
}
if
(
ma_channel_map_blank
(
pConverter
->
channelsIn
,
pConverter
->
channelMapIn
)
||
ma_channel_map_blank
(
pConverter
->
channelsOut
,
pConverter
->
channelMapOut
))
{
pConverter
->
isPassthrough
=
MA_TRUE
;
}
}
/*
We can use a simple case for expanding the mono channel. This will used when expanding a mono input into any output so long
as no LFE is present in the output.
*/
if
(
!
pConverter
->
isPassthrough
)
{
if
(
pConverter
->
channelsIn
==
1
&&
pConverter
->
channelMapIn
[
0
]
==
MA_CHANNEL_MONO
)
{
/* Optimal case if no LFE is in the output channel map. */
pConverter
->
isSimpleMonoExpansion
=
MA_TRUE
;
if
(
ma_channel_map_contains_channel_position
(
pConverter
->
channelsOut
,
pConverter
->
channelMapOut
,
MA_CHANNEL_LFE
))
{
pConverter
->
isSimpleMonoExpansion
=
MA_FALSE
;
}
}
}
/* Another optimized case is stereo to mono. */
if
(
!
pConverter
->
isPassthrough
)
{
if
(
pConverter
->
channelsOut
==
1
&&
pConverter
->
channelMapOut
[
0
]
==
MA_CHANNEL_MONO
&&
pConverter
->
channelsIn
==
2
)
{
/* Optimal case if no LFE is in the input channel map. */
pConverter
->
isStereoToMono
=
MA_TRUE
;
if
(
ma_channel_map_contains_channel_position
(
pConverter
->
channelsIn
,
pConverter
->
channelMapIn
,
MA_CHANNEL_LFE
))
{
pConverter
->
isStereoToMono
=
MA_FALSE
;
}
}
}
/*
Here is where we do a bit of pre-processing to know how each channel should be combined to make up the output. Rules:
1) If it's a passthrough, do nothing - it's just a simple memcpy().
2) If the channel counts are the same and every channel position in the input map is present in the output map, use a
simple shuffle. An example might be different 5.1 channel layouts.
3) Otherwise channels are blended based on spatial locality.
*/
if
(
!
pConverter
->
isPassthrough
)
{
if
(
pConverter
->
channelsIn
==
pConverter
->
channelsOut
)
{
ma_bool32
areAllChannelPositionsPresent
=
MA_TRUE
;
for
(
iChannelIn
=
0
;
iChannelIn
<
pConverter
->
channelsIn
;
++
iChannelIn
)
{
ma_bool32
isInputChannelPositionInOutput
=
MA_FALSE
;
for
(
iChannelOut
=
0
;
iChannelOut
<
pConverter
->
channelsOut
;
++
iChannelOut
)
{
if
(
pConverter
->
channelMapIn
[
iChannelIn
]
==
pConverter
->
channelMapOut
[
iChannelOut
])
{
isInputChannelPositionInOutput
=
MA_TRUE
;
break
;
}
}
if
(
!
isInputChannelPositionInOutput
)
{
areAllChannelPositionsPresent
=
MA_FALSE
;
break
;
}
}
if
(
areAllChannelPositionsPresent
)
{
pConverter
->
isSimpleShuffle
=
MA_TRUE
;
/*
All the router will be doing is rearranging channels which means all we need to do is use a shuffling table which is just
a mapping between the index of the input channel to the index of the output channel.
*/
for
(
iChannelIn
=
0
;
iChannelIn
<
pConverter
->
channelsIn
;
++
iChannelIn
)
{
for
(
iChannelOut
=
0
;
iChannelOut
<
pConverter
->
channelsOut
;
++
iChannelOut
)
{
if
(
pConverter
->
channelMapIn
[
iChannelIn
]
==
pConverter
->
channelMapOut
[
iChannelOut
])
{
pConverter
->
shuffleTable
[
iChannelIn
]
=
(
ma_uint8
)
iChannelOut
;
break
;
}
}
}
}
}
}
/*
Here is where weights are calculated. Note that we calculate the weights at all times, even when using a passthrough and simple
shuffling. We use different algorithms for calculating weights depending on our mixing mode.
In simple mode we don't do any blending (except for converting between mono, which is done in a later step). Instead we just
map 1:1 matching channels. In this mode, if no channels in the input channel map correspond to anything in the output channel
map, nothing will be heard!
*/
/* In all cases we need to make sure all channels that are present in both channel maps have a 1:1 mapping. */
for
(
iChannelIn
=
0
;
iChannelIn
<
pConverter
->
channelsIn
;
++
iChannelIn
)
{
ma_channel
channelPosIn
=
pConverter
->
channelMapIn
[
iChannelIn
];
for
(
iChannelOut
=
0
;
iChannelOut
<
pConverter
->
channelsOut
;
++
iChannelOut
)
{
ma_channel
channelPosOut
=
pConverter
->
channelMapOut
[
iChannelOut
];
if
(
channelPosIn
==
channelPosOut
)
{
if
(
pConverter
->
format
==
ma_format_s16
)
{
pConverter
->
weights
.
s16
[
iChannelIn
][
iChannelOut
]
=
(
1
<<
MA_CHANNEL_CONVERTER_FIXED_POINT_SHIFT
);
}
else
{
pConverter
->
weights
.
f32
[
iChannelIn
][
iChannelOut
]
=
1
;
}
}
}
}
/*
The mono channel is accumulated on all other channels, except LFE. Make sure in this loop we exclude output mono channels since
they were handled in the pass above.
*/
for
(
iChannelIn
=
0
;
iChannelIn
<
pConverter
->
channelsIn
;
++
iChannelIn
)
{
ma_channel
channelPosIn
=
pConverter
->
channelMapIn
[
iChannelIn
];
if
(
channelPosIn
==
MA_CHANNEL_MONO
)
{
for
(
iChannelOut
=
0
;
iChannelOut
<
pConverter
->
channelsOut
;
++
iChannelOut
)
{
ma_channel
channelPosOut
=
pConverter
->
channelMapOut
[
iChannelOut
];
if
(
channelPosOut
!=
MA_CHANNEL_NONE
&&
channelPosOut
!=
MA_CHANNEL_MONO
&&
channelPosOut
!=
MA_CHANNEL_LFE
)
{
if
(
pConverter
->
format
==
ma_format_s16
)
{
pConverter
->
weights
.
s16
[
iChannelIn
][
iChannelOut
]
=
(
1
<<
MA_CHANNEL_CONVERTER_FIXED_POINT_SHIFT
);
}
else
{
pConverter
->
weights
.
f32
[
iChannelIn
][
iChannelOut
]
=
1
;
}
}
}
}
}
/* The output mono channel is the average of all non-none, non-mono and non-lfe input channels. */
{
ma_uint32
len
=
0
;
for
(
iChannelIn
=
0
;
iChannelIn
<
pConverter
->
channelsIn
;
++
iChannelIn
)
{
ma_channel
channelPosIn
=
pConverter
->
channelMapIn
[
iChannelIn
];
if
(
channelPosIn
!=
MA_CHANNEL_NONE
&&
channelPosIn
!=
MA_CHANNEL_MONO
&&
channelPosIn
!=
MA_CHANNEL_LFE
)
{
len
+=
1
;
}
}
if
(
len
>
0
)
{
float
monoWeight
=
1
.
0
f
/
len
;
for
(
iChannelOut
=
0
;
iChannelOut
<
pConverter
->
channelsOut
;
++
iChannelOut
)
{
ma_channel
channelPosOut
=
pConverter
->
channelMapOut
[
iChannelOut
];
if
(
channelPosOut
==
MA_CHANNEL_MONO
)
{
for
(
iChannelIn
=
0
;
iChannelIn
<
pConverter
->
channelsIn
;
++
iChannelIn
)
{
ma_channel
channelPosIn
=
pConverter
->
channelMapIn
[
iChannelIn
];
if
(
channelPosIn
!=
MA_CHANNEL_NONE
&&
channelPosIn
!=
MA_CHANNEL_MONO
&&
channelPosIn
!=
MA_CHANNEL_LFE
)
{
if
(
pConverter
->
format
==
ma_format_s16
)
{
pConverter
->
weights
.
s16
[
iChannelIn
][
iChannelOut
]
=
ma_channel_converter_float_to_fp
(
monoWeight
);
}
else
{
pConverter
->
weights
.
f32
[
iChannelIn
][
iChannelOut
]
=
monoWeight
;
}
}
}
}
}
}
}
/* Input and output channels that are not present on the other side need to be blended in based on spatial locality. */
switch
(
pConverter
->
mixingMode
)
{
case
ma_channel_mix_mode_rectangular
:
{
/* Unmapped input channels. */
for
(
iChannelIn
=
0
;
iChannelIn
<
pConverter
->
channelsIn
;
++
iChannelIn
)
{
ma_channel
channelPosIn
=
pConverter
->
channelMapIn
[
iChannelIn
];
if
(
ma_is_spatial_channel_position
(
channelPosIn
))
{
if
(
!
ma_channel_map_contains_channel_position
(
pConverter
->
channelsOut
,
pConverter
->
channelMapOut
,
channelPosIn
))
{
for
(
iChannelOut
=
0
;
iChannelOut
<
pConverter
->
channelsOut
;
++
iChannelOut
)
{
ma_channel
channelPosOut
=
pConverter
->
channelMapOut
[
iChannelOut
];
if
(
ma_is_spatial_channel_position
(
channelPosOut
))
{
float
weight
=
0
;
if
(
pConverter
->
mixingMode
==
ma_channel_mix_mode_rectangular
)
{
weight
=
ma_calculate_channel_position_rectangular_weight
(
channelPosIn
,
channelPosOut
);
}
/* Only apply the weight if we haven't already got some contribution from the respective channels. */
if
(
pConverter
->
format
==
ma_format_s16
)
{
if
(
pConverter
->
weights
.
s16
[
iChannelIn
][
iChannelOut
]
==
0
)
{
pConverter
->
weights
.
s16
[
iChannelIn
][
iChannelOut
]
=
ma_channel_converter_float_to_fp
(
weight
);
}
}
else
{
if
(
pConverter
->
weights
.
f32
[
iChannelIn
][
iChannelOut
]
==
0
)
{
pConverter
->
weights
.
f32
[
iChannelIn
][
iChannelOut
]
=
weight
;
}
}
}
}
}
}
}
/* Unmapped output channels. */
for
(
iChannelOut
=
0
;
iChannelOut
<
pConverter
->
channelsOut
;
++
iChannelOut
)
{
ma_channel
channelPosOut
=
pConverter
->
channelMapOut
[
iChannelOut
];
if
(
ma_is_spatial_channel_position
(
channelPosOut
))
{
if
(
!
ma_channel_map_contains_channel_position
(
pConverter
->
channelsIn
,
pConverter
->
channelMapIn
,
channelPosOut
))
{
for
(
iChannelIn
=
0
;
iChannelIn
<
pConverter
->
channelsIn
;
++
iChannelIn
)
{
ma_channel
channelPosIn
=
pConverter
->
channelMapIn
[
iChannelIn
];
if
(
ma_is_spatial_channel_position
(
channelPosIn
))
{
float
weight
=
0
;
if
(
pConverter
->
mixingMode
==
ma_channel_mix_mode_rectangular
)
{
weight
=
ma_calculate_channel_position_rectangular_weight
(
channelPosIn
,
channelPosOut
);
}
/* Only apply the weight if we haven't already got some contribution from the respective channels. */
if
(
pConverter
->
format
==
ma_format_s16
)
{
if
(
pConverter
->
weights
.
s16
[
iChannelIn
][
iChannelOut
]
==
0
)
{
pConverter
->
weights
.
s16
[
iChannelIn
][
iChannelOut
]
=
ma_channel_converter_float_to_fp
(
weight
);
}
}
else
{
if
(
pConverter
->
weights
.
f32
[
iChannelIn
][
iChannelOut
]
==
0
)
{
pConverter
->
weights
.
f32
[
iChannelIn
][
iChannelOut
]
=
weight
;
}
}
}
}
}
}
}
}
break
;
case
ma_channel_mix_mode_custom_weights
:
case
ma_channel_mix_mode_simple
:
default:
{
/* Fallthrough. */
}
break
;
}
return
MA_SUCCESS
;
}
void
ma_channel_converter_uninit
(
ma_channel_converter
*
pConverter
)
{
if
(
pConverter
==
NULL
)
{
return
;
}
}
static
ma_result
ma_channel_converter_process_pcm_frames__passthrough
(
ma_channel_converter
*
pConverter
,
void
*
pFramesOut
,
const
void
*
pFramesIn
,
ma_uint64
frameCount
)
{
MA_ASSERT
(
pConverter
!=
NULL
);
MA_ASSERT
(
pFramesOut
!=
NULL
);
MA_ASSERT
(
pFramesIn
!=
NULL
);
ma_copy_memory_64
(
pFramesOut
,
pFramesIn
,
frameCount
*
ma_get_bytes_per_frame
(
pConverter
->
format
,
pConverter
->
channelsOut
));
return
MA_SUCCESS
;
}
static
ma_result
ma_channel_converter_process_pcm_frames__simple_shuffle
(
ma_channel_converter
*
pConverter
,
void
*
pFramesOut
,
const
void
*
pFramesIn
,
ma_uint64
frameCount
)
{
ma_uint32
iFrame
;
ma_uint32
iChannelIn
;
MA_ASSERT
(
pConverter
!=
NULL
);
MA_ASSERT
(
pFramesOut
!=
NULL
);
MA_ASSERT
(
pFramesIn
!=
NULL
);
MA_ASSERT
(
pConverter
->
channelsIn
==
pConverter
->
channelsOut
);
if
(
pConverter
->
format
==
ma_format_s16
)
{
/* */
ma_int16
*
pFramesOutS16
=
(
ma_int16
*
)
pFramesOut
;
const
ma_int16
*
pFramesInS16
=
(
const
ma_int16
*
)
pFramesIn
;
for
(
iFrame
=
0
;
iFrame
<
frameCount
;
iFrame
+=
1
)
{
for
(
iChannelIn
=
0
;
iChannelIn
<
pConverter
->
channelsIn
;
++
iChannelIn
)
{
pFramesOutS16
[
pConverter
->
shuffleTable
[
iChannelIn
]]
=
pFramesInS16
[
iChannelIn
];
}
}
}
else
{
/* */
float
*
pFramesOutF32
=
(
float
*
)
pFramesOut
;
const
float
*
pFramesInF32
=
(
const
float
*
)
pFramesIn
;
for
(
iFrame
=
0
;
iFrame
<
frameCount
;
iFrame
+=
1
)
{
for
(
iChannelIn
=
0
;
iChannelIn
<
pConverter
->
channelsIn
;
++
iChannelIn
)
{
pFramesOutF32
[
pConverter
->
shuffleTable
[
iChannelIn
]]
=
pFramesInF32
[
iChannelIn
];
}
}
}
return
MA_SUCCESS
;
}
static
ma_result
ma_channel_converter_process_pcm_frames__simple_mono_expansion
(
ma_channel_converter
*
pConverter
,
void
*
pFramesOut
,
const
void
*
pFramesIn
,
ma_uint64
frameCount
)
{
ma_uint64
iFrame
;
MA_ASSERT
(
pConverter
!=
NULL
);
MA_ASSERT
(
pFramesOut
!=
NULL
);
MA_ASSERT
(
pFramesIn
!=
NULL
);
if
(
pConverter
->
format
==
ma_format_s16
)
{
/* */
ma_int16
*
pFramesOutS16
=
(
ma_int16
*
)
pFramesOut
;
const
ma_int16
*
pFramesInS16
=
(
const
ma_int16
*
)
pFramesIn
;
if
(
pConverter
->
channelsOut
==
2
)
{
for
(
iFrame
=
0
;
iFrame
<
frameCount
;
++
iFrame
)
{
pFramesOutS16
[
iFrame
*
2
+
0
]
=
pFramesInS16
[
iFrame
];
pFramesOutS16
[
iFrame
*
2
+
1
]
=
pFramesInS16
[
iFrame
];
}
}
else
{
for
(
iFrame
=
0
;
iFrame
<
frameCount
;
++
iFrame
)
{
ma_uint32
iChannel
;
for
(
iChannel
=
0
;
iChannel
<
pConverter
->
channelsOut
;
iChannel
+=
1
)
{
pFramesOutS16
[
iFrame
*
pConverter
->
channelsOut
+
iChannel
]
=
pFramesInS16
[
iFrame
];
}
}
}
}
else
{
/* */
float
*
pFramesOutF32
=
(
float
*
)
pFramesOut
;
const
float
*
pFramesInF32
=
(
const
float
*
)
pFramesIn
;
if
(
pConverter
->
channelsOut
==
2
)
{
for
(
iFrame
=
0
;
iFrame
<
frameCount
;
++
iFrame
)
{
pFramesOutF32
[
iFrame
*
2
+
0
]
=
pFramesInF32
[
iFrame
];
pFramesOutF32
[
iFrame
*
2
+
1
]
=
pFramesInF32
[
iFrame
];
}
}
else
{
for
(
iFrame
=
0
;
iFrame
<
frameCount
;
++
iFrame
)
{
ma_uint32
iChannel
;
for
(
iChannel
=
0
;
iChannel
<
pConverter
->
channelsOut
;
iChannel
+=
1
)
{
pFramesOutF32
[
iFrame
*
pConverter
->
channelsOut
+
iChannel
]
=
pFramesInF32
[
iFrame
];
}
}
}
}
return
MA_SUCCESS
;
}
static
ma_result
ma_channel_converter_process_pcm_frames__stereo_to_mono
(
ma_channel_converter
*
pConverter
,
void
*
pFramesOut
,
const
void
*
pFramesIn
,
ma_uint64
frameCount
)
{
ma_uint64
iFrame
;
MA_ASSERT
(
pConverter
!=
NULL
);
MA_ASSERT
(
pFramesOut
!=
NULL
);
MA_ASSERT
(
pFramesIn
!=
NULL
);
MA_ASSERT
(
pConverter
->
channelsIn
==
2
);
MA_ASSERT
(
pConverter
->
channelsOut
==
1
);
if
(
pConverter
->
format
==
ma_format_s16
)
{
/* */
ma_int16
*
pFramesOutS16
=
(
ma_int16
*
)
pFramesOut
;
const
ma_int16
*
pFramesInS16
=
(
const
ma_int16
*
)
pFramesIn
;
for
(
iFrame
=
0
;
iFrame
<
frameCount
;
++
iFrame
)
{
pFramesOutS16
[
iFrame
]
=
(
ma_int16
)(((
ma_int32
)
pFramesInS16
[
iFrame
*
2
+
0
]
+
(
ma_int32
)
pFramesInS16
[
iFrame
*
2
+
1
])
/
2
);
}
}
else
{
/* */
float
*
pFramesOutF32
=
(
float
*
)
pFramesOut
;
const
float
*
pFramesInF32
=
(
const
float
*
)
pFramesIn
;
for
(
iFrame
=
0
;
iFrame
<
frameCount
;
++
iFrame
)
{
pFramesOutF32
[
iFrame
]
=
(
pFramesInF32
[
iFrame
*
2
+
0
]
+
pFramesInF32
[
iFrame
*
2
+
0
])
*
0
.
5
f
;
}
}
return
MA_SUCCESS
;
}
static
ma_result
ma_channel_converter_process_pcm_frames__weights
(
ma_channel_converter
*
pConverter
,
void
*
pFramesOut
,
const
void
*
pFramesIn
,
ma_uint64
frameCount
)
{
ma_uint32
iFrame
;
ma_uint32
iChannelIn
;
ma_uint32
iChannelOut
;
MA_ASSERT
(
pConverter
!=
NULL
);
MA_ASSERT
(
pFramesOut
!=
NULL
);
MA_ASSERT
(
pFramesIn
!=
NULL
);
/* This is the more complicated case. Each of the output channels is accumulated with 0 or more input channels. */
/* Clear. */
ma_zero_memory_64
(
pFramesOut
,
frameCount
*
ma_get_bytes_per_frame
(
pConverter
->
format
,
pConverter
->
channelsOut
));
/* Accumulate. */
if
(
pConverter
->
format
==
ma_format_s16
)
{
/* */
ma_int16
*
pFramesOutS16
=
(
ma_int16
*
)
pFramesOut
;
const
ma_int16
*
pFramesInS16
=
(
const
ma_int16
*
)
pFramesIn
;
for
(
iFrame
=
0
;
iFrame
<
frameCount
;
iFrame
+=
1
)
{
for
(
iChannelIn
=
0
;
iChannelIn
<
pConverter
->
channelsIn
;
++
iChannelIn
)
{
for
(
iChannelOut
=
0
;
iChannelOut
<
pConverter
->
channelsOut
;
++
iChannelOut
)
{
ma_int32
s
=
pFramesOutS16
[
iFrame
*
pConverter
->
channelsOut
+
iChannelOut
];
s
+=
(
pFramesInS16
[
iFrame
*
pConverter
->
channelsIn
+
iChannelIn
]
*
pConverter
->
weights
.
s16
[
iChannelIn
][
iChannelOut
])
>>
MA_CHANNEL_CONVERTER_FIXED_POINT_SHIFT
;
pFramesOutS16
[
iFrame
*
pConverter
->
channelsOut
+
iChannelOut
]
=
(
ma_int16
)
ma_clamp
(
s
,
-
32768
,
32767
);
}
}
}
}
else
{
/* */
float
*
pFramesOutF32
=
(
float
*
)
pFramesOut
;
const
float
*
pFramesInF32
=
(
const
float
*
)
pFramesIn
;
for
(
iFrame
=
0
;
iFrame
<
frameCount
;
iFrame
+=
1
)
{
for
(
iChannelIn
=
0
;
iChannelIn
<
pConverter
->
channelsIn
;
++
iChannelIn
)
{
for
(
iChannelOut
=
0
;
iChannelOut
<
pConverter
->
channelsOut
;
++
iChannelOut
)
{
pFramesOutF32
[
iFrame
*
pConverter
->
channelsOut
+
iChannelOut
]
+=
pFramesInF32
[
iFrame
*
pConverter
->
channelsIn
+
iChannelIn
]
*
pConverter
->
weights
.
f32
[
iChannelIn
][
iChannelOut
];
}
}
}
}
return
MA_SUCCESS
;
}
ma_result
ma_channel_converter_process_pcm_frames
(
ma_channel_converter
*
pConverter
,
void
*
pFramesOut
,
const
void
*
pFramesIn
,
ma_uint64
frameCount
)
{
if
(
pConverter
==
NULL
)
{
return
MA_INVALID_ARGS
;
}
if
(
pFramesOut
==
NULL
)
{
return
MA_INVALID_ARGS
;
}
if
(
pFramesIn
==
NULL
)
{
ma_zero_memory_64
(
pFramesOut
,
frameCount
*
ma_get_bytes_per_frame
(
pConverter
->
format
,
pConverter
->
channelsOut
));
return
MA_SUCCESS
;
}
if
(
pConverter
->
isPassthrough
)
{
return
ma_channel_converter_process_pcm_frames__passthrough
(
pConverter
,
pFramesOut
,
pFramesIn
,
frameCount
);
}
else
if
(
pConverter
->
isSimpleShuffle
)
{
return
ma_channel_converter_process_pcm_frames__simple_shuffle
(
pConverter
,
pFramesOut
,
pFramesIn
,
frameCount
);
}
else
if
(
pConverter
->
isSimpleMonoExpansion
)
{
return
ma_channel_converter_process_pcm_frames__simple_mono_expansion
(
pConverter
,
pFramesOut
,
pFramesIn
,
frameCount
);
}
else
if
(
pConverter
->
isStereoToMono
)
{
return
ma_channel_converter_process_pcm_frames__stereo_to_mono
(
pConverter
,
pFramesOut
,
pFramesIn
,
frameCount
);
}
else
{
return
ma_channel_converter_process_pcm_frames__weights
(
pConverter
,
pFramesOut
,
pFramesIn
,
frameCount
);
}
return
MA_SUCCESS
;
}
ma_data_converter_config
ma_data_converter_config_init
(
ma_format
formatIn
,
ma_format
formatOut
,
ma_uint32
channelsIn
,
ma_uint32
channelsOut
,
ma_uint32
sampleRateIn
,
ma_uint32
sampleRateOut
)
{
ma_data_converter_config
config
;
...
...
@@ -156,8 +729,8 @@ ma_result ma_data_converter_init(const ma_data_converter_config* pConfig, ma_dat
/* We can enable passthrough optimizations if applicable. Note that we'll only be able to do this if the sample rate is static. */
if
(
pConverter
->
hasPreFormatConversion
==
MA_FALSE
&&
pConverter
->
hasPostFormatConversion
==
MA_FALSE
&&
pConverter
->
hasChannelRouter
==
MA_FALSE
&&
pConverter
->
hasResampler
==
MA_FALSE
)
{
pConverter
->
hasChannelRouter
==
MA_FALSE
&&
pConverter
->
hasResampler
==
MA_FALSE
)
{
pConverter
->
isPassthrough
=
MA_TRUE
;
}
...
...
@@ -254,7 +827,7 @@ static ma_result ma_data_converter_process_pcm_frames__format_only(ma_data_conve
static
ma_result
ma_data_converter_process_pcm_frames__resample_with_format_conversion
(
ma_data_converter
*
pConverter
,
const
void
*
pFramesIn
,
ma_uint64
*
pFrameCountIn
,
void
*
pFramesOut
,
ma_uint64
*
pFrameCountOut
)
{
ma_result
result
;
ma_result
result
=
MA_SUCCESS
;
ma_uint64
frameCountIn
;
ma_uint64
frameCountOut
;
ma_uint64
framesProcessedIn
;
...
...
@@ -326,7 +899,7 @@ static ma_result ma_data_converter_process_pcm_frames__resample_with_format_conv
}
if
(
result
!=
MA_SUCCESS
)
{
return
result
;
break
;
}
}
else
{
/* No pre-format required. Just read straight from the input buffer. */
...
...
@@ -340,7 +913,7 @@ static ma_result ma_data_converter_process_pcm_frames__resample_with_format_conv
result
=
ma_resampler_process_pcm_frames
(
&
pConverter
->
resampler
,
pFramesInThisIteration
,
&
frameCountInThisIteration
,
pTempBufferOut
,
&
frameCountOutThisIteration
);
if
(
result
!=
MA_SUCCESS
)
{
return
result
;
break
;
}
}
...
...
@@ -362,7 +935,7 @@ static ma_result ma_data_converter_process_pcm_frames__resample_with_format_conv
*
pFrameCountOut
=
framesProcessedOut
;
}
return
MA_SUCCESS
;
return
result
;
}
static
ma_result
ma_data_converter_process_pcm_frames__resample_only
(
ma_data_converter
*
pConverter
,
const
void
*
pFramesIn
,
ma_uint64
*
pFrameCountIn
,
void
*
pFramesOut
,
ma_uint64
*
pFrameCountOut
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment