Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Sign in / Register
Toggle navigation
M
miniaudio
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Locked Files
Issues
0
Issues
0
List
Boards
Labels
Service Desk
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Security & Compliance
Security & Compliance
Dependency List
License Compliance
Packages
Packages
List
Container Registry
Analytics
Analytics
CI / CD
Code Review
Insights
Issues
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
MyCard
miniaudio
Commits
a62def6d
Commit
a62def6d
authored
Jun 20, 2021
by
David Reid
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Add reverb node to examples.
This uses
https://github.com/blastbay/verblib
to achieve the effect.
parent
f62e0d3b
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
908 additions
and
0 deletions
+908
-0
research/_extras/nodes/ma_reverb_node/ma_reverb_node.c
research/_extras/nodes/ma_reverb_node/ma_reverb_node.c
+80
-0
research/_extras/nodes/ma_reverb_node/ma_reverb_node.h
research/_extras/nodes/ma_reverb_node/ma_reverb_node.h
+42
-0
research/_extras/nodes/ma_reverb_node/ma_reverb_node_example.c
...rch/_extras/nodes/ma_reverb_node/ma_reverb_node_example.c
+119
-0
research/_extras/nodes/ma_reverb_node/verblib.h
research/_extras/nodes/ma_reverb_node/verblib.h
+667
-0
No files found.
research/_extras/nodes/ma_reverb_node/ma_reverb_node.c
0 → 100644
View file @
a62def6d
#define VERBLIB_IMPLEMENTATION
#include "ma_reverb_node.h"
MA_API
ma_reverb_node_config
ma_reverb_node_config_init
(
ma_uint32
channels
,
ma_uint32
sampleRate
)
{
ma_reverb_node_config
config
;
MA_ZERO_OBJECT
(
&
config
);
config
.
nodeConfig
=
ma_node_config_init
();
/* Input and output channels will be set in ma_reverb_node_init(). */
config
.
channels
=
channels
;
config
.
sampleRate
=
sampleRate
;
config
.
roomSize
=
verblib_initialroom
;
config
.
damping
=
verblib_initialdamp
;
config
.
width
=
verblib_initialwidth
;
config
.
wetVolume
=
verblib_initialwet
;
config
.
dryVolume
=
verblib_initialdry
;
config
.
mode
=
verblib_initialmode
;
return
config
;
}
static
void
ma_reverb_node_process_pcm_frames
(
ma_node
*
pNode
,
const
float
**
ppFramesIn
,
ma_uint32
*
pFrameCountIn
,
float
**
ppFramesOut
,
ma_uint32
*
pFrameCountOut
)
{
ma_reverb_node
*
pReverbNode
=
(
ma_reverb_node
*
)
pNode
;
(
void
)
pFrameCountIn
;
verblib_process
(
&
pReverbNode
->
reverb
,
ppFramesIn
[
0
],
ppFramesOut
[
0
],
*
pFrameCountOut
);
}
static
ma_node_vtable
g_ma_reverb_node_vtable
=
{
ma_reverb_node_process_pcm_frames
,
NULL
,
1
,
/* 1 input channels. */
1
,
/* 1 output channel. */
MA_NODE_FLAG_CONTINUOUS_PROCESSING
/* Reverb requires continuous processing to ensure the tail get's processed. */
};
MA_API
ma_result
ma_reverb_node_init
(
ma_node_graph
*
pNodeGraph
,
const
ma_reverb_node_config
*
pConfig
,
const
ma_allocation_callbacks
*
pAllocationCallbacks
,
ma_reverb_node
*
pReverbNode
)
{
ma_result
result
;
ma_node_config
baseConfig
;
if
(
pReverbNode
==
NULL
)
{
return
MA_INVALID_ARGS
;
}
MA_ZERO_OBJECT
(
pReverbNode
);
if
(
pConfig
==
NULL
)
{
return
MA_INVALID_ARGS
;
}
if
(
verblib_initialize
(
&
pReverbNode
->
reverb
,
(
unsigned
long
)
pConfig
->
sampleRate
,
(
unsigned
int
)
pConfig
->
channels
)
==
0
)
{
return
MA_INVALID_ARGS
;
}
baseConfig
=
pConfig
->
nodeConfig
;
baseConfig
.
vtable
=
&
g_ma_reverb_node_vtable
;
baseConfig
.
inputChannels
[
0
]
=
pConfig
->
channels
;
baseConfig
.
inputChannels
[
1
]
=
0
;
/* Unused. */
baseConfig
.
outputChannels
[
0
]
=
pConfig
->
channels
;
baseConfig
.
outputChannels
[
1
]
=
0
;
/* Unused. */
result
=
ma_node_init
(
pNodeGraph
,
&
baseConfig
,
pAllocationCallbacks
,
&
pReverbNode
->
baseNode
);
if
(
result
!=
MA_SUCCESS
)
{
return
result
;
}
return
MA_SUCCESS
;
}
MA_API
void
ma_reverb_node_uninit
(
ma_reverb_node
*
pReverbNode
,
const
ma_allocation_callbacks
*
pAllocationCallbacks
)
{
/* The base node is always uninitialized first. */
ma_node_uninit
(
pReverbNode
,
pAllocationCallbacks
);
}
research/_extras/nodes/ma_reverb_node/ma_reverb_node.h
0 → 100644
View file @
a62def6d
/* Include ma_vocoder_node.h after miniaudio.h */
#ifndef ma_reverb_node_h
#define ma_reverb_node_h
#include "verblib.h"
#ifdef __cplusplus
extern
"C"
{
#endif
/*
The reverb node has one input and one output.
*/
typedef
struct
{
ma_node_config
nodeConfig
;
ma_uint32
channels
;
/* The number of channels of the source, which will be the same as the output. Must be 1 or 2. The excite bus must always have one channel. */
ma_uint32
sampleRate
;
float
roomSize
;
float
damping
;
float
width
;
float
wetVolume
;
float
dryVolume
;
float
mode
;
}
ma_reverb_node_config
;
MA_API
ma_reverb_node_config
ma_reverb_node_config_init
(
ma_uint32
channels
,
ma_uint32
sampleRate
);
typedef
struct
{
ma_node_base
baseNode
;
verblib
reverb
;
}
ma_reverb_node
;
MA_API
ma_result
ma_reverb_node_init
(
ma_node_graph
*
pNodeGraph
,
const
ma_reverb_node_config
*
pConfig
,
const
ma_allocation_callbacks
*
pAllocationCallbacks
,
ma_reverb_node
*
pReverbNode
);
MA_API
void
ma_reverb_node_uninit
(
ma_reverb_node
*
pReverbNode
,
const
ma_allocation_callbacks
*
pAllocationCallbacks
);
#ifdef __cplusplus
}
#endif
#endif
/* ma_reverb_node_h */
research/_extras/nodes/ma_reverb_node/ma_reverb_node_example.c
0 → 100644
View file @
a62def6d
#define MINIAUDIO_IMPLEMENTATION
#include "../../../../miniaudio.h"
#include "../../../miniaudio_engine.h"
#include "ma_reverb_node.c"
#include <stdio.h>
#define DEVICE_FORMAT ma_format_f32;
/* Must always be f32 for this example because the node graph system only works with this. */
#define DEVICE_CHANNELS 1
/* For this example, always set to 1. */
#define DEVICE_SAMPLE_RATE 48000
/* Cannot be less than 22050 for this example. */
static
ma_audio_buffer_ref
g_dataSupply
;
/* The underlying data source of the source node. */
static
ma_data_source_node
g_dataSupplyNode
;
/* The node that will sit at the root level. Will be reading data from g_dataSupply. */
static
ma_reverb_node
g_reverbNode
;
/* The reverb node. */
static
ma_node_graph
g_nodeGraph
;
/* The main node graph that we'll be feeding data through. */
void
data_callback
(
ma_device
*
pDevice
,
void
*
pOutput
,
const
void
*
pInput
,
ma_uint32
frameCount
)
{
MA_ASSERT
(
pDevice
->
capture
.
format
==
pDevice
->
playback
.
format
&&
pDevice
->
capture
.
format
==
ma_format_f32
);
MA_ASSERT
(
pDevice
->
capture
.
channels
==
pDevice
->
playback
.
channels
);
/*
The node graph system is a pulling style of API. At the lowest level of the chain will be a
node acting as a data source for the purpose of delivering the initial audio data. In our case,
the data source is our `pInput` buffer. We need to update the underlying data source so that it
read data from `pInput`.
*/
ma_audio_buffer_ref_set_data
(
&
g_dataSupply
,
pInput
,
frameCount
);
/* With the source buffer configured we can now read directly from the node graph. */
ma_node_graph_read_pcm_frames
(
&
g_nodeGraph
,
pOutput
,
frameCount
,
NULL
);
}
int
main
(
int
argc
,
char
**
argv
)
{
ma_result
result
;
ma_device_config
deviceConfig
;
ma_device
device
;
ma_node_graph_config
nodeGraphConfig
;
ma_reverb_node_config
reverbNodeConfig
;
ma_data_source_node_config
dataSupplyNodeConfig
;
deviceConfig
=
ma_device_config_init
(
ma_device_type_duplex
);
deviceConfig
.
capture
.
pDeviceID
=
NULL
;
deviceConfig
.
capture
.
format
=
DEVICE_FORMAT
;
deviceConfig
.
capture
.
channels
=
DEVICE_CHANNELS
;
deviceConfig
.
capture
.
shareMode
=
ma_share_mode_shared
;
deviceConfig
.
playback
.
pDeviceID
=
NULL
;
deviceConfig
.
playback
.
format
=
DEVICE_FORMAT
;
deviceConfig
.
playback
.
channels
=
DEVICE_CHANNELS
;
deviceConfig
.
sampleRate
=
DEVICE_SAMPLE_RATE
;
deviceConfig
.
dataCallback
=
data_callback
;
result
=
ma_device_init
(
NULL
,
&
deviceConfig
,
&
device
);
if
(
result
!=
MA_SUCCESS
)
{
return
result
;
}
/* Node graph. */
nodeGraphConfig
=
ma_node_graph_config_init
(
device
.
capture
.
channels
);
result
=
ma_node_graph_init
(
&
nodeGraphConfig
,
NULL
,
&
g_nodeGraph
);
if
(
result
!=
MA_SUCCESS
)
{
printf
(
"Failed to initialize node graph."
);
goto
done0
;
}
/* Reverb. Attached straight to the endpoint. */
reverbNodeConfig
=
ma_reverb_node_config_init
(
device
.
capture
.
channels
,
device
.
sampleRate
);
result
=
ma_reverb_node_init
(
&
g_nodeGraph
,
&
reverbNodeConfig
,
NULL
,
&
g_reverbNode
);
if
(
result
!=
MA_SUCCESS
)
{
printf
(
"Failed to initialize vocoder node."
);
goto
done1
;
}
ma_node_attach_output_bus
(
&
g_reverbNode
,
0
,
ma_node_graph_get_endpoint
(
&
g_nodeGraph
),
0
);
/* Data supply. Attached to input bus 0 of the reverb node. */
result
=
ma_audio_buffer_ref_init
(
device
.
capture
.
format
,
device
.
capture
.
channels
,
NULL
,
0
,
&
g_dataSupply
);
if
(
result
!=
MA_SUCCESS
)
{
printf
(
"Failed to initialize audio buffer for source."
);
goto
done2
;
}
dataSupplyNodeConfig
=
ma_data_source_node_config_init
(
&
g_dataSupply
,
MA_FALSE
);
result
=
ma_data_source_node_init
(
&
g_nodeGraph
,
&
dataSupplyNodeConfig
,
NULL
,
&
g_dataSupplyNode
);
if
(
result
!=
MA_SUCCESS
)
{
printf
(
"Failed to initialize source node."
);
goto
done2
;
}
ma_node_attach_output_bus
(
&
g_dataSupplyNode
,
0
,
&
g_reverbNode
,
0
);
/* Now we just start the device and wait for the user to terminate the program. */
ma_device_start
(
&
device
);
printf
(
"Press Enter to quit...
\n
"
);
getchar
();
/* It's important that we stop the device first or else we'll uninitialize the graph from under the device. */
ma_device_stop
(
&
device
);
/*done3:*/
ma_data_source_node_uninit
(
&
g_dataSupplyNode
,
NULL
);
done2:
ma_reverb_node_uninit
(
&
g_reverbNode
,
NULL
);
done1:
ma_node_graph_uninit
(
&
g_nodeGraph
,
NULL
);
done0:
ma_device_uninit
(
&
device
);
(
void
)
argc
;
(
void
)
argv
;
return
0
;
}
\ No newline at end of file
research/_extras/nodes/ma_reverb_node/verblib.h
0 → 100644
View file @
a62def6d
/* Reverb Library
* Verblib version 0.4 - 2021-01-23
*
* Philip Bennefall - philip@blastbay.com
*
* See the end of this file for licensing terms.
* This reverb is based on Freeverb, a public domain reverb written by Jezar at Dreampoint.
*
* IMPORTANT: The reverb currently only works with 1 or 2 channels, at sample rates of 22050 HZ and above.
* These restrictions may be lifted in a future version.
*
* USAGE
*
* This is a single-file library. To use it, do something like the following in one .c file.
* #define VERBLIB_IMPLEMENTATION
* #include "verblib.h"
*
* You can then #include this file in other parts of the program as you would with any other header file.
*/
#ifndef VERBLIB_H
#define VERBLIB_H
#ifdef __cplusplus
extern
"C"
{
#endif
/* COMPILE-TIME OPTIONS */
/* The maximum sample rate that should be supported, specified as a multiple of 44100. */
#ifndef verblib_max_sample_rate_multiplier
#define verblib_max_sample_rate_multiplier 4
#endif
/* The silence threshold which is used when calculating decay time. */
#ifndef verblib_silence_threshold
#define verblib_silence_threshold 80.0
/* In dB (absolute). */
#endif
/* PUBLIC API */
typedef
struct
verblib
verblib
;
/* Initialize a verblib structure.
*
* Call this function to initialize the verblib structure.
* Returns nonzero (true) on success or 0 (false) on failure.
* The function will only fail if one or more of the parameters are invalid.
*/
int
verblib_initialize
(
verblib
*
verb
,
unsigned
long
sample_rate
,
unsigned
int
channels
);
/* Run the reverb.
*
* Call this function continuously to generate your output.
* output_buffer may be the same pointer as input_buffer if in place processing is desired.
* frames specifies the number of sample frames that should be processed.
*/
void
verblib_process
(
verblib
*
verb
,
const
float
*
input_buffer
,
float
*
output_buffer
,
unsigned
long
frames
);
/* Set the size of the room, between 0.0 and 1.0. */
void
verblib_set_room_size
(
verblib
*
verb
,
float
value
);
/* Get the size of the room. */
float
verblib_get_room_size
(
const
verblib
*
verb
);
/* Set the amount of damping, between 0.0 and 1.0. */
void
verblib_set_damping
(
verblib
*
verb
,
float
value
);
/* Get the amount of damping. */
float
verblib_get_damping
(
const
verblib
*
verb
);
/* Set the stereo width of the reverb, between 0.0 and 1.0. */
void
verblib_set_width
(
verblib
*
verb
,
float
value
);
/* Get the stereo width of the reverb. */
float
verblib_get_width
(
const
verblib
*
verb
);
/* Set the volume of the wet signal, between 0.0 and 1.0. */
void
verblib_set_wet
(
verblib
*
verb
,
float
value
);
/* Get the volume of the wet signal. */
float
verblib_get_wet
(
const
verblib
*
verb
);
/* Set the volume of the dry signal, between 0.0 and 1.0. */
void
verblib_set_dry
(
verblib
*
verb
,
float
value
);
/* Get the volume of the dry signal. */
float
verblib_get_dry
(
const
verblib
*
verb
);
/* Set the mode of the reverb, where values below 0.5 mean normal and values above mean frozen. */
void
verblib_set_mode
(
verblib
*
verb
,
float
value
);
/* Get the mode of the reverb. */
float
verblib_get_mode
(
const
verblib
*
verb
);
/* Get the decay time in sample frames based on the current room size setting. */
/* If freeze mode is active, the decay time is infinite and this function returns 0. */
unsigned
long
verblib_get_decay_time_in_frames
(
const
verblib
*
verb
);
/* INTERNAL STRUCTURES */
/* Allpass filter */
typedef
struct
verblib_allpass
verblib_allpass
;
struct
verblib_allpass
{
float
*
buffer
;
float
feedback
;
int
bufsize
;
int
bufidx
;
};
/* Comb filter */
typedef
struct
verblib_comb
verblib_comb
;
struct
verblib_comb
{
float
*
buffer
;
float
feedback
;
float
filterstore
;
float
damp1
;
float
damp2
;
int
bufsize
;
int
bufidx
;
};
/* Reverb model tuning values */
#define verblib_numcombs 8
#define verblib_numallpasses 4
#define verblib_muted 0.0f
#define verblib_fixedgain 0.015f
#define verblib_scalewet 3.0f
#define verblib_scaledry 2.0f
#define verblib_scaledamp 0.8f
#define verblib_scaleroom 0.28f
#define verblib_offsetroom 0.7f
#define verblib_initialroom 0.5f
#define verblib_initialdamp 0.25f
#define verblib_initialwet 1.0f/verblib_scalewet
#define verblib_initialdry 0.0f
#define verblib_initialwidth 1.0f
#define verblib_initialmode 0.0f
#define verblib_freezemode 0.5f
#define verblib_stereospread 23
/*
* These values assume 44.1KHz sample rate, but will be verblib_scaled appropriately.
* The values were obtained by listening tests.
*/
#define verblib_combtuningL1 1116
#define verblib_combtuningR1 (1116+verblib_stereospread)
#define verblib_combtuningL2 1188
#define verblib_combtuningR2 (1188+verblib_stereospread)
#define verblib_combtuningL3 1277
#define verblib_combtuningR3 (1277+verblib_stereospread)
#define verblib_combtuningL4 1356
#define verblib_combtuningR4 (1356+verblib_stereospread)
#define verblib_combtuningL5 1422
#define verblib_combtuningR5 (1422+verblib_stereospread)
#define verblib_combtuningL6 1491
#define verblib_combtuningR6 (1491+verblib_stereospread)
#define verblib_combtuningL7 1557
#define verblib_combtuningR7 (1557+verblib_stereospread)
#define verblib_combtuningL8 1617
#define verblib_combtuningR8 (1617+verblib_stereospread)
#define verblib_allpasstuningL1 556
#define verblib_allpasstuningR1 (556+verblib_stereospread)
#define verblib_allpasstuningL2 441
#define verblib_allpasstuningR2 (441+verblib_stereospread)
#define verblib_allpasstuningL3 341
#define verblib_allpasstuningR3 (341+verblib_stereospread)
#define verblib_allpasstuningL4 225
#define verblib_allpasstuningR4 (225+verblib_stereospread)
/* The main reverb structure. This is the structure that you will create an instance of when using the reverb. */
struct
verblib
{
unsigned
int
channels
;
float
gain
;
float
roomsize
,
roomsize1
;
float
damp
,
damp1
;
float
wet
,
wet1
,
wet2
;
float
dry
;
float
width
;
float
mode
;
/*
* The following are all declared inline
* to remove the need for dynamic allocation.
*/
/* Comb filters */
verblib_comb
combL
[
verblib_numcombs
];
verblib_comb
combR
[
verblib_numcombs
];
/* Allpass filters */
verblib_allpass
allpassL
[
verblib_numallpasses
];
verblib_allpass
allpassR
[
verblib_numallpasses
];
/* Buffers for the combs */
float
bufcombL1
[
verblib_combtuningL1
*
verblib_max_sample_rate_multiplier
];
float
bufcombR1
[
verblib_combtuningR1
*
verblib_max_sample_rate_multiplier
];
float
bufcombL2
[
verblib_combtuningL2
*
verblib_max_sample_rate_multiplier
];
float
bufcombR2
[
verblib_combtuningR2
*
verblib_max_sample_rate_multiplier
];
float
bufcombL3
[
verblib_combtuningL3
*
verblib_max_sample_rate_multiplier
];
float
bufcombR3
[
verblib_combtuningR3
*
verblib_max_sample_rate_multiplier
];
float
bufcombL4
[
verblib_combtuningL4
*
verblib_max_sample_rate_multiplier
];
float
bufcombR4
[
verblib_combtuningR4
*
verblib_max_sample_rate_multiplier
];
float
bufcombL5
[
verblib_combtuningL5
*
verblib_max_sample_rate_multiplier
];
float
bufcombR5
[
verblib_combtuningR5
*
verblib_max_sample_rate_multiplier
];
float
bufcombL6
[
verblib_combtuningL6
*
verblib_max_sample_rate_multiplier
];
float
bufcombR6
[
verblib_combtuningR6
*
verblib_max_sample_rate_multiplier
];
float
bufcombL7
[
verblib_combtuningL7
*
verblib_max_sample_rate_multiplier
];
float
bufcombR7
[
verblib_combtuningR7
*
verblib_max_sample_rate_multiplier
];
float
bufcombL8
[
verblib_combtuningL8
*
verblib_max_sample_rate_multiplier
];
float
bufcombR8
[
verblib_combtuningR8
*
verblib_max_sample_rate_multiplier
];
/* Buffers for the allpasses */
float
bufallpassL1
[
verblib_allpasstuningL1
*
verblib_max_sample_rate_multiplier
];
float
bufallpassR1
[
verblib_allpasstuningR1
*
verblib_max_sample_rate_multiplier
];
float
bufallpassL2
[
verblib_allpasstuningL2
*
verblib_max_sample_rate_multiplier
];
float
bufallpassR2
[
verblib_allpasstuningR2
*
verblib_max_sample_rate_multiplier
];
float
bufallpassL3
[
verblib_allpasstuningL3
*
verblib_max_sample_rate_multiplier
];
float
bufallpassR3
[
verblib_allpasstuningR3
*
verblib_max_sample_rate_multiplier
];
float
bufallpassL4
[
verblib_allpasstuningL4
*
verblib_max_sample_rate_multiplier
];
float
bufallpassR4
[
verblib_allpasstuningR4
*
verblib_max_sample_rate_multiplier
];
};
#ifdef __cplusplus
}
#endif
#endif
/* VERBLIB_H */
/* IMPLEMENTATION */
#ifdef VERBLIB_IMPLEMENTATION
#include <stddef.h>
#include <math.h>
#ifdef _MSC_VER
#define VERBLIB_INLINE __forceinline
#else
#ifdef __GNUC__
#define VERBLIB_INLINE inline __attribute__((always_inline))
#else
#define VERBLIB_INLINE inline
#endif
#endif
#define undenormalise(sample) sample+=1.0f; sample-=1.0f;
/* Allpass filter */
static
void
verblib_allpass_initialize
(
verblib_allpass
*
allpass
,
float
*
buf
,
int
size
)
{
allpass
->
buffer
=
buf
;
allpass
->
bufsize
=
size
;
allpass
->
bufidx
=
0
;
}
static
VERBLIB_INLINE
float
verblib_allpass_process
(
verblib_allpass
*
allpass
,
float
input
)
{
float
output
;
float
bufout
;
bufout
=
allpass
->
buffer
[
allpass
->
bufidx
];
undenormalise
(
bufout
);
output
=
-
input
+
bufout
;
allpass
->
buffer
[
allpass
->
bufidx
]
=
input
+
(
bufout
*
allpass
->
feedback
);
if
(
++
allpass
->
bufidx
>=
allpass
->
bufsize
)
{
allpass
->
bufidx
=
0
;
}
return
output
;
}
static
void
verblib_allpass_mute
(
verblib_allpass
*
allpass
)
{
int
i
;
for
(
i
=
0
;
i
<
allpass
->
bufsize
;
i
++
)
{
allpass
->
buffer
[
i
]
=
0
.
0
f
;
}
}
/* Comb filter */
static
void
verblib_comb_initialize
(
verblib_comb
*
comb
,
float
*
buf
,
int
size
)
{
comb
->
buffer
=
buf
;
comb
->
bufsize
=
size
;
comb
->
filterstore
=
0
.
0
f
;
comb
->
bufidx
=
0
;
}
static
void
verblib_comb_mute
(
verblib_comb
*
comb
)
{
int
i
;
for
(
i
=
0
;
i
<
comb
->
bufsize
;
i
++
)
{
comb
->
buffer
[
i
]
=
0
.
0
f
;
}
}
static
void
verblib_comb_set_damp
(
verblib_comb
*
comb
,
float
val
)
{
comb
->
damp1
=
val
;
comb
->
damp2
=
1
.
0
f
-
val
;
}
static
VERBLIB_INLINE
float
verblib_comb_process
(
verblib_comb
*
comb
,
float
input
)
{
float
output
;
output
=
comb
->
buffer
[
comb
->
bufidx
];
undenormalise
(
output
);
comb
->
filterstore
=
(
output
*
comb
->
damp2
)
+
(
comb
->
filterstore
*
comb
->
damp1
);
undenormalise
(
comb
->
filterstore
);
comb
->
buffer
[
comb
->
bufidx
]
=
input
+
(
comb
->
filterstore
*
comb
->
feedback
);
if
(
++
comb
->
bufidx
>=
comb
->
bufsize
)
{
comb
->
bufidx
=
0
;
}
return
output
;
}
static
void
verblib_update
(
verblib
*
verb
)
{
/* Recalculate internal values after parameter change. */
int
i
;
verb
->
wet1
=
verb
->
wet
*
(
verb
->
width
/
2
.
0
f
+
0
.
5
f
);
verb
->
wet2
=
verb
->
wet
*
(
(
1
.
0
f
-
verb
->
width
)
/
2
.
0
f
);
if
(
verb
->
mode
>=
verblib_freezemode
)
{
verb
->
roomsize1
=
1
.
0
f
;
verb
->
damp1
=
0
.
0
f
;
verb
->
gain
=
verblib_muted
;
}
else
{
verb
->
roomsize1
=
verb
->
roomsize
;
verb
->
damp1
=
verb
->
damp
;
verb
->
gain
=
verblib_fixedgain
;
}
for
(
i
=
0
;
i
<
verblib_numcombs
;
i
++
)
{
verb
->
combL
[
i
].
feedback
=
verb
->
roomsize1
;
verb
->
combR
[
i
].
feedback
=
verb
->
roomsize1
;
verblib_comb_set_damp
(
&
verb
->
combL
[
i
],
verb
->
damp1
);
verblib_comb_set_damp
(
&
verb
->
combR
[
i
],
verb
->
damp1
);
}
}
static
void
verblib_mute
(
verblib
*
verb
)
{
int
i
;
if
(
verblib_get_mode
(
verb
)
>=
verblib_freezemode
)
{
return
;
}
for
(
i
=
0
;
i
<
verblib_numcombs
;
i
++
)
{
verblib_comb_mute
(
&
verb
->
combL
[
i
]
);
verblib_comb_mute
(
&
verb
->
combR
[
i
]
);
}
for
(
i
=
0
;
i
<
verblib_numallpasses
;
i
++
)
{
verblib_allpass_mute
(
&
verb
->
allpassL
[
i
]
);
verblib_allpass_mute
(
&
verb
->
allpassR
[
i
]
);
}
}
static
int
verblib_get_verblib_scaled_buffer_size
(
unsigned
long
sample_rate
,
unsigned
long
value
)
{
long
double
result
=
(
long
double
)
sample_rate
;
result
/=
44100
.
0
;
result
=
(
(
long
double
)
value
)
*
result
;
if
(
result
<
1
.
0
)
{
result
=
1
.
0
;
}
return
(
int
)
result
;
}
int
verblib_initialize
(
verblib
*
verb
,
unsigned
long
sample_rate
,
unsigned
int
channels
)
{
int
i
;
if
(
channels
!=
1
&&
channels
!=
2
)
{
return
0
;
/* Currently supports only 1 or 2 channels. */
}
if
(
sample_rate
<
22050
)
{
return
0
;
/* The minimum supported sample rate is 22050 HZ. */
}
else
if
(
sample_rate
>
44100
*
verblib_max_sample_rate_multiplier
)
{
return
0
;
/* The sample rate is too high. */
}
verb
->
channels
=
channels
;
/* Tie the components to their buffers. */
verblib_comb_initialize
(
&
verb
->
combL
[
0
],
verb
->
bufcombL1
,
verblib_get_verblib_scaled_buffer_size
(
sample_rate
,
verblib_combtuningL1
)
);
verblib_comb_initialize
(
&
verb
->
combR
[
0
],
verb
->
bufcombR1
,
verblib_get_verblib_scaled_buffer_size
(
sample_rate
,
verblib_combtuningR1
)
);
verblib_comb_initialize
(
&
verb
->
combL
[
1
],
verb
->
bufcombL2
,
verblib_get_verblib_scaled_buffer_size
(
sample_rate
,
verblib_combtuningL2
)
);
verblib_comb_initialize
(
&
verb
->
combR
[
1
],
verb
->
bufcombR2
,
verblib_get_verblib_scaled_buffer_size
(
sample_rate
,
verblib_combtuningR2
)
);
verblib_comb_initialize
(
&
verb
->
combL
[
2
],
verb
->
bufcombL3
,
verblib_get_verblib_scaled_buffer_size
(
sample_rate
,
verblib_combtuningL3
)
);
verblib_comb_initialize
(
&
verb
->
combR
[
2
],
verb
->
bufcombR3
,
verblib_get_verblib_scaled_buffer_size
(
sample_rate
,
verblib_combtuningR3
)
);
verblib_comb_initialize
(
&
verb
->
combL
[
3
],
verb
->
bufcombL4
,
verblib_get_verblib_scaled_buffer_size
(
sample_rate
,
verblib_combtuningL4
)
);
verblib_comb_initialize
(
&
verb
->
combR
[
3
],
verb
->
bufcombR4
,
verblib_get_verblib_scaled_buffer_size
(
sample_rate
,
verblib_combtuningR4
)
);
verblib_comb_initialize
(
&
verb
->
combL
[
4
],
verb
->
bufcombL5
,
verblib_get_verblib_scaled_buffer_size
(
sample_rate
,
verblib_combtuningL5
)
);
verblib_comb_initialize
(
&
verb
->
combR
[
4
],
verb
->
bufcombR5
,
verblib_get_verblib_scaled_buffer_size
(
sample_rate
,
verblib_combtuningR5
)
);
verblib_comb_initialize
(
&
verb
->
combL
[
5
],
verb
->
bufcombL6
,
verblib_get_verblib_scaled_buffer_size
(
sample_rate
,
verblib_combtuningL6
)
);
verblib_comb_initialize
(
&
verb
->
combR
[
5
],
verb
->
bufcombR6
,
verblib_get_verblib_scaled_buffer_size
(
sample_rate
,
verblib_combtuningR6
)
);
verblib_comb_initialize
(
&
verb
->
combL
[
6
],
verb
->
bufcombL7
,
verblib_get_verblib_scaled_buffer_size
(
sample_rate
,
verblib_combtuningL7
)
);
verblib_comb_initialize
(
&
verb
->
combR
[
6
],
verb
->
bufcombR7
,
verblib_get_verblib_scaled_buffer_size
(
sample_rate
,
verblib_combtuningR7
)
);
verblib_comb_initialize
(
&
verb
->
combL
[
7
],
verb
->
bufcombL8
,
verblib_get_verblib_scaled_buffer_size
(
sample_rate
,
verblib_combtuningL8
)
);
verblib_comb_initialize
(
&
verb
->
combR
[
7
],
verb
->
bufcombR8
,
verblib_get_verblib_scaled_buffer_size
(
sample_rate
,
verblib_combtuningR8
)
);
verblib_allpass_initialize
(
&
verb
->
allpassL
[
0
],
verb
->
bufallpassL1
,
verblib_get_verblib_scaled_buffer_size
(
sample_rate
,
verblib_allpasstuningL1
)
);
verblib_allpass_initialize
(
&
verb
->
allpassR
[
0
],
verb
->
bufallpassR1
,
verblib_get_verblib_scaled_buffer_size
(
sample_rate
,
verblib_allpasstuningR1
)
);
verblib_allpass_initialize
(
&
verb
->
allpassL
[
1
],
verb
->
bufallpassL2
,
verblib_get_verblib_scaled_buffer_size
(
sample_rate
,
verblib_allpasstuningL2
)
);
verblib_allpass_initialize
(
&
verb
->
allpassR
[
1
],
verb
->
bufallpassR2
,
verblib_get_verblib_scaled_buffer_size
(
sample_rate
,
verblib_allpasstuningR2
)
);
verblib_allpass_initialize
(
&
verb
->
allpassL
[
2
],
verb
->
bufallpassL3
,
verblib_get_verblib_scaled_buffer_size
(
sample_rate
,
verblib_allpasstuningL3
)
);
verblib_allpass_initialize
(
&
verb
->
allpassR
[
2
],
verb
->
bufallpassR3
,
verblib_get_verblib_scaled_buffer_size
(
sample_rate
,
verblib_allpasstuningR3
)
);
verblib_allpass_initialize
(
&
verb
->
allpassL
[
3
],
verb
->
bufallpassL4
,
verblib_get_verblib_scaled_buffer_size
(
sample_rate
,
verblib_allpasstuningL4
)
);
verblib_allpass_initialize
(
&
verb
->
allpassR
[
3
],
verb
->
bufallpassR4
,
verblib_get_verblib_scaled_buffer_size
(
sample_rate
,
verblib_allpasstuningR4
)
);
/* Set default values. */
for
(
i
=
0
;
i
<
verblib_numallpasses
;
i
++
)
{
verb
->
allpassL
[
i
].
feedback
=
0
.
5
f
;
verb
->
allpassR
[
i
].
feedback
=
0
.
5
f
;
}
verblib_set_wet
(
verb
,
verblib_initialwet
);
verblib_set_room_size
(
verb
,
verblib_initialroom
);
verblib_set_dry
(
verb
,
verblib_initialdry
);
verblib_set_damping
(
verb
,
verblib_initialdamp
);
verblib_set_width
(
verb
,
verblib_initialwidth
);
verblib_set_mode
(
verb
,
verblib_initialmode
);
/* The buffers will be full of rubbish - so we MUST mute them. */
verblib_mute
(
verb
);
return
1
;
}
void
verblib_process
(
verblib
*
verb
,
const
float
*
input_buffer
,
float
*
output_buffer
,
unsigned
long
frames
)
{
int
i
;
float
outL
,
outR
,
input
;
if
(
verb
->
channels
==
1
)
{
while
(
frames
--
>
0
)
{
outL
=
0
.
0
f
;
input
=
(
input_buffer
[
0
]
*
2
.
0
f
)
*
verb
->
gain
;
/* Accumulate comb filters in parallel. */
for
(
i
=
0
;
i
<
verblib_numcombs
;
i
++
)
{
outL
+=
verblib_comb_process
(
&
verb
->
combL
[
i
],
input
);
}
/* Feed through allpasses in series. */
for
(
i
=
0
;
i
<
verblib_numallpasses
;
i
++
)
{
outL
=
verblib_allpass_process
(
&
verb
->
allpassL
[
i
],
outL
);
}
/* Calculate output REPLACING anything already there. */
output_buffer
[
0
]
=
outL
*
verb
->
wet1
+
input_buffer
[
0
]
*
verb
->
dry
;
/* Increment sample pointers. */
++
input_buffer
;
++
output_buffer
;
}
}
else
if
(
verb
->
channels
==
2
)
{
while
(
frames
--
>
0
)
{
outL
=
outR
=
0
.
0
f
;
input
=
(
input_buffer
[
0
]
+
input_buffer
[
1
]
)
*
verb
->
gain
;
/* Accumulate comb filters in parallel. */
for
(
i
=
0
;
i
<
verblib_numcombs
;
i
++
)
{
outL
+=
verblib_comb_process
(
&
verb
->
combL
[
i
],
input
);
outR
+=
verblib_comb_process
(
&
verb
->
combR
[
i
],
input
);
}
/* Feed through allpasses in series. */
for
(
i
=
0
;
i
<
verblib_numallpasses
;
i
++
)
{
outL
=
verblib_allpass_process
(
&
verb
->
allpassL
[
i
],
outL
);
outR
=
verblib_allpass_process
(
&
verb
->
allpassR
[
i
],
outR
);
}
/* Calculate output REPLACING anything already there. */
output_buffer
[
0
]
=
outL
*
verb
->
wet1
+
outR
*
verb
->
wet2
+
input_buffer
[
0
]
*
verb
->
dry
;
output_buffer
[
1
]
=
outR
*
verb
->
wet1
+
outL
*
verb
->
wet2
+
input_buffer
[
1
]
*
verb
->
dry
;
/* Increment sample pointers. */
input_buffer
+=
2
;
output_buffer
+=
2
;
}
}
}
void
verblib_set_room_size
(
verblib
*
verb
,
float
value
)
{
verb
->
roomsize
=
(
value
*
verblib_scaleroom
)
+
verblib_offsetroom
;
verblib_update
(
verb
);
}
float
verblib_get_room_size
(
const
verblib
*
verb
)
{
return
(
verb
->
roomsize
-
verblib_offsetroom
)
/
verblib_scaleroom
;
}
void
verblib_set_damping
(
verblib
*
verb
,
float
value
)
{
verb
->
damp
=
value
*
verblib_scaledamp
;
verblib_update
(
verb
);
}
float
verblib_get_damping
(
const
verblib
*
verb
)
{
return
verb
->
damp
/
verblib_scaledamp
;
}
void
verblib_set_wet
(
verblib
*
verb
,
float
value
)
{
verb
->
wet
=
value
*
verblib_scalewet
;
verblib_update
(
verb
);
}
float
verblib_get_wet
(
const
verblib
*
verb
)
{
return
verb
->
wet
/
verblib_scalewet
;
}
void
verblib_set_dry
(
verblib
*
verb
,
float
value
)
{
verb
->
dry
=
value
*
verblib_scaledry
;
}
float
verblib_get_dry
(
const
verblib
*
verb
)
{
return
verb
->
dry
/
verblib_scaledry
;
}
void
verblib_set_width
(
verblib
*
verb
,
float
value
)
{
verb
->
width
=
value
;
verblib_update
(
verb
);
}
float
verblib_get_width
(
const
verblib
*
verb
)
{
return
verb
->
width
;
}
void
verblib_set_mode
(
verblib
*
verb
,
float
value
)
{
verb
->
mode
=
value
;
verblib_update
(
verb
);
}
float
verblib_get_mode
(
const
verblib
*
verb
)
{
if
(
verb
->
mode
>=
verblib_freezemode
)
{
return
1
.
0
f
;
}
return
0
.
0
f
;
}
unsigned
long
verblib_get_decay_time_in_frames
(
const
verblib
*
verb
)
{
double
decay
;
if
(
verb
->
mode
>=
verblib_freezemode
)
{
return
0
;
/* Freeze mode creates an infinite decay. */
}
decay
=
verblib_silence_threshold
/
fabs
(
-
20
.
0
*
log
(
1
.
0
/
verb
->
roomsize1
)
);
decay
*=
(
double
)
(
verb
->
combR
[
7
].
bufsize
*
2
);
return
(
unsigned
long
)
decay
;
}
#endif
/* VERBLIB_IMPLEMENTATION */
/* REVISION HISTORY
*
* Version 0.4 - 2021-01-23
* Added a function called verblib_get_decay_time_in_frames.
*
* Version 0.3 - 2021-01-18
* Added support for sample rates of 22050 and above.
*
* Version 0.2 - 2021-01-17
* Added support for processing mono audio.
*
* Version 0.1 - 2021-01-17
* Initial release.
*/
/* LICENSE
This software is available under 2 licenses -- choose whichever you prefer.
------------------------------------------------------------------------------
ALTERNATIVE A - MIT No Attribution License
Copyright (c) 2021 Philip Bennefall
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
------------------------------------------------------------------------------
ALTERNATIVE B - Public Domain (www.unlicense.org)
This is free and unencumbered software released into the public domain.
Anyone is free to copy, modify, publish, use, compile, sell, or distribute this
software, either in source code form or as a compiled binary, for any purpose,
commercial or non-commercial, and by any means.
In jurisdictions that recognize copyright laws, the author or authors of this
software dedicate any and all copyright interest in the software to the public
domain. We make this dedication for the benefit of the public at large and to
the detriment of our heirs and successors. We intend this dedication to be an
overt act of relinquishment in perpetuity of all present and future rights to
this software under copyright law.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
------------------------------------------------------------------------------
*/
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment