Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Sign in / Register
Toggle navigation
Y
ygo-agent
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Locked Files
Issues
0
Issues
0
List
Boards
Labels
Service Desk
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Security & Compliance
Security & Compliance
Dependency List
License Compliance
Packages
Packages
List
Container Registry
Analytics
Analytics
CI / CD
Code Review
Insights
Issues
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Biluo Shen
ygo-agent
Commits
4b934828
Commit
4b934828
authored
Mar 06, 2024
by
biluo.shen
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Add multi-node
parent
157f440c
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
657 additions
and
0 deletions
+657
-0
scripts/ppo_sp2.py
scripts/ppo_sp2.py
+657
-0
No files found.
scripts/ppo_sp2.py
0 → 100644
View file @
4b934828
import
os
import
random
import
time
from
collections
import
deque
from
dataclasses
import
dataclass
from
typing
import
Literal
,
Optional
import
ygoenv
import
numpy
as
np
import
optree
import
tyro
import
torch
import
torch.nn
as
nn
import
torch.optim
as
optim
from
torch.distributions
import
Categorical
import
torch.distributed
as
dist
from
torch.cuda.amp
import
GradScaler
,
autocast
from
ygoai.utils
import
init_ygopro
from
ygoai.rl.utils
import
RecordEpisodeStatistics
from
ygoai.rl.agent
import
PPOAgent
as
Agent
from
ygoai.rl.dist
import
reduce_gradidents
,
torchrun_setup
,
fprint
from
ygoai.rl.buffer
import
create_obs
@
dataclass
class
Args
:
exp_name
:
str
=
os
.
path
.
basename
(
__file__
)[:
-
len
(
".py"
)]
"""the name of this experiment"""
seed
:
int
=
1
"""seed of the experiment"""
torch_deterministic
:
bool
=
False
"""if toggled, `torch.backends.cudnn.deterministic=False`"""
cuda
:
bool
=
True
"""if toggled, cuda will be enabled by default"""
# Algorithm specific arguments
env_id
:
str
=
"YGOPro-v0"
"""the id of the environment"""
deck
:
str
=
"../assets/deck"
"""the deck file to use"""
deck1
:
Optional
[
str
]
=
None
"""the deck file for the first player"""
deck2
:
Optional
[
str
]
=
None
"""the deck file for the second player"""
code_list_file
:
str
=
"code_list.txt"
"""the code list file for card embeddings"""
embedding_file
:
Optional
[
str
]
=
None
"""the embedding file for card embeddings"""
max_options
:
int
=
24
"""the maximum number of options"""
n_history_actions
:
int
=
16
"""the number of history actions to use"""
play_mode
:
str
=
"bot"
"""the play mode, can be combination of 'bot' (greedy), 'random', like 'bot+random'"""
num_layers
:
int
=
2
"""the number of layers for the agent"""
num_channels
:
int
=
128
"""the number of channels for the agent"""
checkpoint
:
Optional
[
str
]
=
None
"""the checkpoint to load the model from"""
total_timesteps
:
int
=
2000000000
"""total timesteps of the experiments"""
learning_rate
:
float
=
2.5e-4
"""the learning rate of the optimizer"""
num_envs
:
int
=
8
"""the number of parallel game environments"""
num_steps
:
int
=
128
"""the number of steps to run in each environment per policy rollout"""
anneal_lr
:
bool
=
True
"""Toggle learning rate annealing for policy and value networks"""
gamma
:
float
=
0.997
"""the discount factor gamma"""
gae_lambda
:
float
=
0.95
"""the lambda for the general advantage estimation"""
minibatch_size
:
int
=
256
"""the mini-batch size"""
update_epochs
:
int
=
2
"""the K epochs to update the policy"""
norm_adv
:
bool
=
True
"""Toggles advantages normalization"""
clip_coef
:
float
=
0.1
"""the surrogate clipping coefficient"""
clip_vloss
:
bool
=
True
"""Toggles whether or not to use a clipped loss for the value function, as per the paper."""
ent_coef
:
float
=
0.01
"""coefficient of the entropy"""
vf_coef
:
float
=
0.5
"""coefficient of the value function"""
max_grad_norm
:
float
=
0.5
"""the maximum norm for the gradient clipping"""
target_kl
:
Optional
[
float
]
=
None
"""the target KL divergence threshold"""
backend
:
Literal
[
"gloo"
,
"nccl"
,
"mpi"
]
=
"nccl"
"""the backend for distributed training"""
compile
:
Optional
[
str
]
=
None
"""Compile mode of torch.compile, None for no compilation"""
torch_threads
:
Optional
[
int
]
=
None
"""the number of threads to use for torch, defaults to ($OMP_NUM_THREADS or 2) * world_size"""
env_threads
:
Optional
[
int
]
=
None
"""the number of threads to use for envpool, defaults to `num_envs`"""
fp16_train
:
bool
=
False
"""if toggled, training will be done in fp16 precision"""
fp16_eval
:
bool
=
False
"""if toggled, evaluation will be done in fp16 precision"""
tb_dir
:
str
=
"./runs"
"""tensorboard log directory"""
ckpt_dir
:
str
=
"./checkpoints"
"""checkpoint directory"""
save_interval
:
int
=
500
"""the number of iterations to save the model"""
log_p
:
float
=
1.0
"""the probability of logging"""
eval_episodes
:
int
=
128
"""the number of episodes to evaluate the model"""
eval_interval
:
int
=
10
"""the number of iterations to evaluate the model"""
# to be filled in runtime
local_batch_size
:
int
=
0
"""the local batch size in the local rank (computed in runtime)"""
local_minibatch_size
:
int
=
0
"""the local mini-batch size in the local rank (computed in runtime)"""
local_num_envs
:
int
=
0
"""the number of parallel game environments (in the local rank, computed in runtime)"""
batch_size
:
int
=
0
"""the batch size (computed in runtime)"""
num_iterations
:
int
=
0
"""the number of iterations (computed in runtime)"""
world_size
:
int
=
0
"""the number of processes (computed in runtime)"""
def
main
():
rank
=
int
(
os
.
environ
.
get
(
"RANK"
,
0
))
local_rank
=
int
(
os
.
environ
.
get
(
"LOCAL_RANK"
,
0
))
world_size
=
int
(
os
.
environ
.
get
(
"WORLD_SIZE"
,
1
))
print
(
f
"rank={rank}, local_rank={local_rank}, world_size={world_size}"
)
args
=
tyro
.
cli
(
Args
)
args
.
world_size
=
world_size
args
.
local_num_envs
=
args
.
num_envs
//
args
.
world_size
args
.
local_batch_size
=
int
(
args
.
local_num_envs
*
args
.
num_steps
)
args
.
local_minibatch_size
=
int
(
args
.
minibatch_size
//
args
.
world_size
)
args
.
batch_size
=
int
(
args
.
num_envs
*
args
.
num_steps
)
args
.
num_iterations
=
args
.
total_timesteps
//
args
.
batch_size
args
.
env_threads
=
args
.
env_threads
or
args
.
num_envs
args
.
torch_threads
=
args
.
torch_threads
or
(
int
(
os
.
getenv
(
"OMP_NUM_THREADS"
,
"2"
))
*
args
.
world_size
)
local_torch_threads
=
args
.
torch_threads
//
args
.
world_size
local_env_threads
=
args
.
env_threads
//
args
.
world_size
torch
.
set_num_threads
(
local_torch_threads
)
torch
.
set_float32_matmul_precision
(
'high'
)
if
args
.
world_size
>
1
:
torchrun_setup
(
args
.
backend
,
local_rank
)
timestamp
=
int
(
time
.
time
())
run_name
=
f
"{args.env_id}__{args.exp_name}__{args.seed}__{timestamp}"
writer
=
None
if
rank
==
0
:
from
torch.utils.tensorboard
import
SummaryWriter
writer
=
SummaryWriter
(
os
.
path
.
join
(
args
.
tb_dir
,
run_name
))
writer
.
add_text
(
"hyperparameters"
,
"|param|value|
\n
|-|-|
\n
%
s"
%
(
"
\n
"
.
join
([
f
"|{key}|{value}|"
for
key
,
value
in
vars
(
args
)
.
items
()])),
)
ckpt_dir
=
os
.
path
.
join
(
args
.
ckpt_dir
,
run_name
)
os
.
makedirs
(
ckpt_dir
,
exist_ok
=
True
)
# TRY NOT TO MODIFY: seeding
# CRUCIAL: note that we needed to pass a different seed for each data parallelism worker
args
.
seed
+=
rank
random
.
seed
(
args
.
seed
)
np
.
random
.
seed
(
args
.
seed
)
torch
.
manual_seed
(
args
.
seed
-
rank
)
if
args
.
torch_deterministic
:
torch
.
backends
.
cudnn
.
deterministic
=
True
else
:
torch
.
backends
.
cudnn
.
benchmark
=
True
device
=
torch
.
device
(
f
"cuda:{local_rank}"
if
torch
.
cuda
.
is_available
()
and
args
.
cuda
else
"cpu"
)
deck
=
init_ygopro
(
args
.
env_id
,
"english"
,
args
.
deck
,
args
.
code_list_file
)
args
.
deck1
=
args
.
deck1
or
deck
args
.
deck2
=
args
.
deck2
or
deck
# env setup
envs
=
ygoenv
.
make
(
task_id
=
args
.
env_id
,
env_type
=
"gymnasium"
,
num_envs
=
args
.
local_num_envs
,
num_threads
=
local_env_threads
,
seed
=
args
.
seed
,
deck1
=
args
.
deck1
,
deck2
=
args
.
deck2
,
max_options
=
args
.
max_options
,
n_history_actions
=
args
.
n_history_actions
,
play_mode
=
'self'
,
)
envs
.
num_envs
=
args
.
local_num_envs
obs_space
=
envs
.
observation_space
action_shape
=
envs
.
action_space
.
shape
if
local_rank
==
0
:
fprint
(
f
"obs_space={obs_space}, action_shape={action_shape}"
)
envs_per_thread
=
args
.
local_num_envs
//
local_env_threads
local_eval_episodes
=
args
.
eval_episodes
//
args
.
world_size
local_eval_num_envs
=
local_eval_episodes
eval_envs
=
ygoenv
.
make
(
task_id
=
args
.
env_id
,
env_type
=
"gymnasium"
,
num_envs
=
local_eval_num_envs
,
num_threads
=
max
(
1
,
local_eval_num_envs
//
envs_per_thread
),
seed
=
args
.
seed
,
deck1
=
args
.
deck1
,
deck2
=
args
.
deck2
,
max_options
=
args
.
max_options
,
n_history_actions
=
args
.
n_history_actions
,
play_mode
=
args
.
play_mode
,
)
eval_envs
.
num_envs
=
local_eval_num_envs
envs
=
RecordEpisodeStatistics
(
envs
)
eval_envs
=
RecordEpisodeStatistics
(
eval_envs
)
if
args
.
embedding_file
:
embeddings
=
np
.
load
(
args
.
embedding_file
)
embedding_shape
=
embeddings
.
shape
else
:
embedding_shape
=
None
L
=
args
.
num_layers
agent
=
Agent
(
args
.
num_channels
,
L
,
L
,
1
,
embedding_shape
)
.
to
(
device
)
if
args
.
checkpoint
:
agent
.
load_state_dict
(
torch
.
load
(
args
.
checkpoint
,
map_location
=
device
))
fprint
(
f
"Loaded checkpoint from {args.checkpoint}"
)
elif
args
.
embedding_file
:
agent
.
load_embeddings
(
embeddings
)
fprint
(
f
"Loaded embeddings from {args.embedding_file}"
)
if
args
.
embedding_file
:
agent
.
freeze_embeddings
()
optim_params
=
list
(
agent
.
parameters
())
optimizer
=
optim
.
Adam
(
optim_params
,
lr
=
args
.
learning_rate
,
eps
=
1e-5
)
scaler
=
GradScaler
(
enabled
=
args
.
fp16_train
,
init_scale
=
2
**
8
)
def
masked_mean
(
x
,
valid
):
x
=
x
.
masked_fill
(
~
valid
,
0
)
return
x
.
sum
()
/
valid
.
float
()
.
sum
()
def
masked_normalize
(
x
,
valid
,
eps
=
1e-8
):
x
=
x
.
masked_fill
(
~
valid
,
0
)
n
=
valid
.
float
()
.
sum
()
mean
=
x
.
sum
()
/
n
var
=
((
x
-
mean
)
**
2
)
.
sum
()
/
n
std
=
(
var
+
eps
)
.
sqrt
()
return
(
x
-
mean
)
/
std
def
train_step
(
agent
:
Agent
,
scaler
,
mb_obs
,
mb_actions
,
mb_logprobs
,
mb_advantages
,
mb_returns
,
mb_values
,
mb_learns
):
with
autocast
(
enabled
=
args
.
fp16_train
):
logits
,
newvalue
,
valid
=
agent
(
mb_obs
)
probs
=
Categorical
(
logits
=
logits
)
newlogprob
=
probs
.
log_prob
(
mb_actions
)
entropy
=
probs
.
entropy
()
logratio
=
newlogprob
-
mb_logprobs
ratio
=
logratio
.
exp
()
with
torch
.
no_grad
():
# calculate approx_kl http://joschu.net/blog/kl-approx.html
old_approx_kl
=
(
-
logratio
)
.
mean
()
approx_kl
=
((
ratio
-
1
)
-
logratio
)
.
mean
()
clipfrac
=
((
ratio
-
1.0
)
.
abs
()
>
args
.
clip_coef
)
.
float
()
.
mean
()
if
args
.
norm_adv
:
mb_advantages
=
masked_normalize
(
mb_advantages
,
valid
,
eps
=
1e-8
)
# Policy loss
pg_loss1
=
-
mb_advantages
*
ratio
pg_loss2
=
-
mb_advantages
*
torch
.
clamp
(
ratio
,
1
-
args
.
clip_coef
,
1
+
args
.
clip_coef
)
pg_loss
=
torch
.
max
(
pg_loss1
,
pg_loss2
)
pg_loss
=
masked_mean
(
pg_loss
,
valid
)
# Value loss
newvalue
=
newvalue
.
view
(
-
1
)
if
args
.
clip_vloss
:
v_loss_unclipped
=
(
newvalue
-
mb_returns
)
**
2
v_clipped
=
mb_values
+
torch
.
clamp
(
newvalue
-
mb_values
,
-
args
.
clip_coef
,
args
.
clip_coef
,
)
v_loss_clipped
=
(
v_clipped
-
mb_returns
)
**
2
v_loss_max
=
torch
.
max
(
v_loss_unclipped
,
v_loss_clipped
)
v_loss
=
0.5
*
v_loss_max
else
:
v_loss
=
0.5
*
((
newvalue
-
mb_returns
)
**
2
)
v_loss
=
masked_mean
(
v_loss
,
valid
)
entropy_loss
=
masked_mean
(
entropy
,
valid
)
loss
=
pg_loss
-
args
.
ent_coef
*
entropy_loss
+
v_loss
*
args
.
vf_coef
optimizer
.
zero_grad
()
scaler
.
scale
(
loss
)
.
backward
()
scaler
.
unscale_
(
optimizer
)
return
old_approx_kl
,
approx_kl
,
clipfrac
,
pg_loss
,
v_loss
,
entropy_loss
def
predict_step
(
agent
:
Agent
,
next_obs
):
with
torch
.
no_grad
():
with
autocast
(
enabled
=
args
.
fp16_eval
):
logits
,
value
,
valid
=
agent
(
next_obs
)
return
logits
,
value
if
args
.
compile
:
# It seems that using torch.compile twice cause segfault at start, so we use torch.jit.trace here
# predict_step = torch.compile(predict_step, mode=args.compile)
obs
=
create_obs
(
envs
.
observation_space
,
(
args
.
local_num_envs
,),
device
=
device
)
with
torch
.
no_grad
():
traced_model
=
torch
.
jit
.
trace
(
agent
,
(
obs
,),
check_tolerance
=
False
,
check_trace
=
False
)
train_step
=
torch
.
compile
(
train_step
,
mode
=
args
.
compile
)
def
to_tensor
(
x
,
dtype
=
torch
.
float32
):
return
optree
.
tree_map
(
lambda
x
:
torch
.
from_numpy
(
x
)
.
to
(
device
=
device
,
dtype
=
dtype
,
non_blocking
=
True
),
x
)
# ALGO Logic: Storage setup
obs
=
create_obs
(
obs_space
,
(
args
.
num_steps
,
args
.
local_num_envs
),
device
)
actions
=
torch
.
zeros
((
args
.
num_steps
,
args
.
local_num_envs
)
+
action_shape
)
.
to
(
device
)
logprobs
=
torch
.
zeros
((
args
.
num_steps
,
args
.
local_num_envs
))
.
to
(
device
)
rewards
=
torch
.
zeros
((
args
.
num_steps
,
args
.
local_num_envs
))
.
to
(
device
)
dones
=
torch
.
zeros
((
args
.
num_steps
,
args
.
local_num_envs
),
dtype
=
torch
.
bool
)
.
to
(
device
)
values
=
torch
.
zeros
((
args
.
num_steps
,
args
.
local_num_envs
))
.
to
(
device
)
learns
=
torch
.
zeros
((
args
.
num_steps
,
args
.
local_num_envs
),
dtype
=
torch
.
bool
)
.
to
(
device
)
avg_ep_returns
=
deque
(
maxlen
=
1000
)
avg_win_rates
=
deque
(
maxlen
=
1000
)
# TRY NOT TO MODIFY: start the game
global_step
=
0
warmup_steps
=
0
start_time
=
time
.
time
()
next_obs
,
info
=
envs
.
reset
()
next_obs
=
to_tensor
(
next_obs
,
dtype
=
torch
.
uint8
)
next_to_play_
=
info
[
"to_play"
]
next_to_play
=
to_tensor
(
next_to_play_
)
next_done
=
torch
.
zeros
(
args
.
local_num_envs
,
device
=
device
,
dtype
=
torch
.
bool
)
ai_player1_
=
np
.
concatenate
([
np
.
zeros
(
args
.
local_num_envs
//
2
,
dtype
=
np
.
int64
),
np
.
ones
(
args
.
local_num_envs
//
2
,
dtype
=
np
.
int64
)
])
np
.
random
.
shuffle
(
ai_player1_
)
ai_player1
=
to_tensor
(
ai_player1_
,
dtype
=
next_to_play
.
dtype
)
next_value1
=
0
next_value2
=
0
for
iteration
in
range
(
1
,
args
.
num_iterations
+
1
):
# Annealing the rate if instructed to do so.
if
args
.
anneal_lr
:
frac
=
1.0
-
(
iteration
-
1.0
)
/
args
.
num_iterations
lrnow
=
frac
*
args
.
learning_rate
optimizer
.
param_groups
[
0
][
"lr"
]
=
lrnow
model_time
=
0
env_time
=
0
collect_start
=
time
.
time
()
agent
.
eval
()
for
step
in
range
(
0
,
args
.
num_steps
):
global_step
+=
args
.
num_envs
for
key
in
obs
:
obs
[
key
][
step
]
=
next_obs
[
key
]
dones
[
step
]
=
next_done
learn
=
next_to_play
==
ai_player1
learns
[
step
]
=
learn
_start
=
time
.
time
()
logits
,
value
=
predict_step
(
traced_model
,
next_obs
)
value
=
value
.
flatten
()
probs
=
Categorical
(
logits
=
logits
)
action
=
probs
.
sample
()
logprob
=
probs
.
log_prob
(
action
)
values
[
step
]
=
value
actions
[
step
]
=
action
logprobs
[
step
]
=
logprob
action
=
action
.
cpu
()
.
numpy
()
model_time
+=
time
.
time
()
-
_start
next_nonterminal
=
1
-
next_done
.
float
()
next_value1
=
torch
.
where
(
learn
,
value
,
next_value1
)
*
next_nonterminal
next_value2
=
torch
.
where
(
learn
,
next_value2
,
value
)
*
next_nonterminal
_start
=
time
.
time
()
to_play
=
next_to_play_
next_obs
,
reward
,
next_done_
,
info
=
envs
.
step
(
action
)
next_to_play_
=
info
[
"to_play"
]
next_to_play
=
to_tensor
(
next_to_play_
)
env_time
+=
time
.
time
()
-
_start
rewards
[
step
]
=
to_tensor
(
reward
)
next_obs
,
next_done
=
to_tensor
(
next_obs
,
torch
.
uint8
),
to_tensor
(
next_done_
,
torch
.
bool
)
if
not
writer
:
continue
for
idx
,
d
in
enumerate
(
next_done_
):
if
d
:
pl
=
1
if
to_play
[
idx
]
==
ai_player1_
[
idx
]
else
-
1
episode_length
=
info
[
'l'
][
idx
]
episode_reward
=
info
[
'r'
][
idx
]
*
pl
win
=
1
if
episode_reward
>
0
else
0
avg_ep_returns
.
append
(
episode_reward
)
avg_win_rates
.
append
(
win
)
if
random
.
random
()
<
args
.
log_p
:
n
=
100
if
random
.
random
()
<
10
/
n
or
iteration
<=
2
:
writer
.
add_scalar
(
"charts/episodic_return"
,
info
[
"r"
][
idx
],
global_step
)
writer
.
add_scalar
(
"charts/episodic_length"
,
info
[
"l"
][
idx
],
global_step
)
fprint
(
f
"global_step={global_step}, e_ret={episode_reward}, e_len={episode_length}"
)
if
random
.
random
()
<
1
/
n
:
writer
.
add_scalar
(
"charts/avg_ep_return"
,
np
.
mean
(
avg_ep_returns
),
global_step
)
writer
.
add_scalar
(
"charts/avg_win_rate"
,
np
.
mean
(
avg_win_rates
),
global_step
)
collect_time
=
time
.
time
()
-
collect_start
if
local_rank
==
0
:
fprint
(
f
"collect_time={collect_time:.4f}, model_time={model_time:.4f}, env_time={env_time:.4f}"
)
_start
=
time
.
time
()
# bootstrap value if not done
with
torch
.
no_grad
():
# value = agent.get_value(next_obs).reshape(-1)
value
=
traced_model
(
next_obs
)[
1
]
.
reshape
(
-
1
)
advantages
=
torch
.
zeros_like
(
rewards
)
.
to
(
device
)
nextvalues1
=
torch
.
where
(
next_to_play
==
ai_player1
,
value
,
next_value1
)
nextvalues2
=
torch
.
where
(
next_to_play
!=
ai_player1
,
value
,
next_value2
)
# TODO: optimize this
done_used1
=
torch
.
ones_like
(
next_done
,
dtype
=
torch
.
bool
)
done_used2
=
torch
.
ones_like
(
next_done
,
dtype
=
torch
.
bool
)
reward1
=
reward2
=
0
lastgaelam1
=
lastgaelam2
=
0
for
t
in
reversed
(
range
(
args
.
num_steps
)):
# if learns[t]:
# if dones[t+1]:
# reward1 = rewards[t]
# nextvalues1 = 0
# lastgaelam1 = 0
# done_used1 = True
#
# reward2 = -rewards[t]
# done_used2 = False
# else:
# if not done_used1:
# reward1 = reward1
# nextvalues1 = 0
# lastgaelam1 = 0
# done_used1 = True
# else:
# reward1 = rewards[t]
# reward2 = reward2
# delta1 = reward1 + args.gamma * nextvalues1 - values[t]
# lastgaelam1_ = delta1 + args.gamma * args.gae_lambda * lastgaelam1
# advantages[t] = lastgaelam1_
# nextvalues1 = values[t]
# lastgaelam1 = lastgaelam_
# else:
# if dones[t+1]:
# reward2 = rewards[t]
# nextvalues2 = 0
# lastgaelam2 = 0
# done_used2 = True
#
# reward1 = -rewards[t]
# done_used1 = False
# else:
# if not done_used2:
# reward2 = reward2
# nextvalues2 = 0
# lastgaelam2 = 0
# done_used2 = True
# else:
# reward2 = rewards[t]
# reward1 = reward1
# delta2 = reward2 + args.gamma * nextvalues2 - values[t]
# lastgaelam2_ = delta2 + args.gamma * args.gae_lambda * lastgaelam2
# advantages[t] = lastgaelam2_
# nextvalues2 = values[t]
# lastgaelam2 = lastgaelam_
learn1
=
learns
[
t
]
learn2
=
~
learn1
if
t
!=
args
.
num_steps
-
1
:
next_done
=
dones
[
t
+
1
]
sp
=
2
*
(
learn1
.
int
()
-
0.5
)
reward1
=
torch
.
where
(
next_done
,
rewards
[
t
]
*
sp
,
torch
.
where
(
learn1
&
done_used1
,
0
,
reward1
))
reward2
=
torch
.
where
(
next_done
,
rewards
[
t
]
*
-
sp
,
torch
.
where
(
learn2
&
done_used2
,
0
,
reward2
))
real_done1
=
next_done
|
~
done_used1
nextvalues1
=
torch
.
where
(
real_done1
,
0
,
nextvalues1
)
lastgaelam1
=
torch
.
where
(
real_done1
,
0
,
lastgaelam1
)
real_done2
=
next_done
|
~
done_used2
nextvalues2
=
torch
.
where
(
real_done2
,
0
,
nextvalues2
)
lastgaelam2
=
torch
.
where
(
real_done2
,
0
,
lastgaelam2
)
done_used1
=
torch
.
where
(
next_done
,
learn1
,
torch
.
where
(
learn1
&
~
done_used1
,
True
,
done_used1
))
done_used2
=
torch
.
where
(
next_done
,
learn2
,
torch
.
where
(
learn2
&
~
done_used2
,
True
,
done_used2
))
delta1
=
reward1
+
args
.
gamma
*
nextvalues1
-
values
[
t
]
delta2
=
reward2
+
args
.
gamma
*
nextvalues2
-
values
[
t
]
lastgaelam1_
=
delta1
+
args
.
gamma
*
args
.
gae_lambda
*
lastgaelam1
lastgaelam2_
=
delta2
+
args
.
gamma
*
args
.
gae_lambda
*
lastgaelam2
advantages
[
t
]
=
torch
.
where
(
learn1
,
lastgaelam1_
,
lastgaelam2_
)
nextvalues1
=
torch
.
where
(
learn1
,
values
[
t
],
nextvalues1
)
nextvalues2
=
torch
.
where
(
learn2
,
values
[
t
],
nextvalues2
)
lastgaelam1
=
torch
.
where
(
learn1
,
lastgaelam1_
,
lastgaelam1
)
lastgaelam2
=
torch
.
where
(
learn2
,
lastgaelam2_
,
lastgaelam2
)
returns
=
advantages
+
values
bootstrap_time
=
time
.
time
()
-
_start
_start
=
time
.
time
()
agent
.
train
()
# flatten the batch
b_obs
=
{
k
:
v
.
reshape
((
-
1
,)
+
v
.
shape
[
2
:])
for
k
,
v
in
obs
.
items
()
}
b_logprobs
=
logprobs
.
reshape
(
-
1
)
b_actions
=
actions
.
reshape
((
-
1
,)
+
action_shape
)
b_advantages
=
advantages
.
reshape
(
-
1
)
b_returns
=
returns
.
reshape
(
-
1
)
b_values
=
values
.
reshape
(
-
1
)
b_learns
=
learns
.
reshape
(
-
1
)
# Optimizing the policy and value network
b_inds
=
np
.
arange
(
args
.
local_batch_size
)
clipfracs
=
[]
for
epoch
in
range
(
args
.
update_epochs
):
np
.
random
.
shuffle
(
b_inds
)
for
start
in
range
(
0
,
args
.
local_batch_size
,
args
.
local_minibatch_size
):
end
=
start
+
args
.
local_minibatch_size
mb_inds
=
b_inds
[
start
:
end
]
mb_obs
=
{
k
:
v
[
mb_inds
]
for
k
,
v
in
b_obs
.
items
()
}
old_approx_kl
,
approx_kl
,
clipfrac
,
pg_loss
,
v_loss
,
entropy_loss
=
\
train_step
(
agent
,
scaler
,
mb_obs
,
b_actions
[
mb_inds
],
b_logprobs
[
mb_inds
],
b_advantages
[
mb_inds
],
b_returns
[
mb_inds
],
b_values
[
mb_inds
],
b_learns
[
mb_inds
])
reduce_gradidents
(
optim_params
,
args
.
world_size
)
nn
.
utils
.
clip_grad_norm_
(
optim_params
,
args
.
max_grad_norm
)
scaler
.
step
(
optimizer
)
scaler
.
update
()
clipfracs
.
append
(
clipfrac
.
item
())
if
args
.
target_kl
is
not
None
and
approx_kl
>
args
.
target_kl
:
break
train_time
=
time
.
time
()
-
_start
if
local_rank
==
0
:
fprint
(
f
"train_time={train_time:.4f}, collect_time={collect_time:.4f}, bootstrap_time={bootstrap_time:.4f}"
)
y_pred
,
y_true
=
b_values
.
cpu
()
.
numpy
(),
b_returns
.
cpu
()
.
numpy
()
var_y
=
np
.
var
(
y_true
)
explained_var
=
np
.
nan
if
var_y
==
0
else
1
-
np
.
var
(
y_true
-
y_pred
)
/
var_y
# TRY NOT TO MODIFY: record rewards for plotting purposes
if
rank
==
0
:
if
iteration
%
args
.
save_interval
==
0
:
torch
.
save
(
agent
.
state_dict
(),
os
.
path
.
join
(
ckpt_dir
,
f
"agent.pth"
))
writer
.
add_scalar
(
"charts/learning_rate"
,
optimizer
.
param_groups
[
0
][
"lr"
],
global_step
)
writer
.
add_scalar
(
"losses/value_loss"
,
v_loss
.
item
(),
global_step
)
writer
.
add_scalar
(
"losses/policy_loss"
,
pg_loss
.
item
(),
global_step
)
writer
.
add_scalar
(
"losses/entropy"
,
entropy_loss
.
item
(),
global_step
)
writer
.
add_scalar
(
"losses/old_approx_kl"
,
old_approx_kl
.
item
(),
global_step
)
writer
.
add_scalar
(
"losses/approx_kl"
,
approx_kl
.
item
(),
global_step
)
writer
.
add_scalar
(
"losses/clipfrac"
,
np
.
mean
(
clipfracs
),
global_step
)
writer
.
add_scalar
(
"losses/explained_variance"
,
explained_var
,
global_step
)
SPS
=
int
((
global_step
-
warmup_steps
)
/
(
time
.
time
()
-
start_time
))
# Warmup at first few iterations for accurate SPS measurement
SPS_warmup_iters
=
10
if
iteration
==
SPS_warmup_iters
:
start_time
=
time
.
time
()
warmup_steps
=
global_step
if
iteration
>
SPS_warmup_iters
:
if
local_rank
==
0
:
fprint
(
f
"SPS: {SPS}"
)
if
rank
==
0
:
writer
.
add_scalar
(
"charts/SPS"
,
SPS
,
global_step
)
if
iteration
%
args
.
eval_interval
==
0
:
# Eval with rule-based policy
_start
=
time
.
time
()
episode_lengths
=
[]
episode_rewards
=
[]
eval_win_rates
=
[]
e_obs
=
eval_envs
.
reset
()[
0
]
while
True
:
e_obs
=
to_tensor
(
e_obs
,
dtype
=
torch
.
uint8
)
e_logits
=
predict_step
(
traced_model
,
e_obs
)[
0
]
e_probs
=
torch
.
softmax
(
e_logits
,
dim
=-
1
)
e_probs
=
e_probs
.
cpu
()
.
numpy
()
e_actions
=
e_probs
.
argmax
(
axis
=
1
)
e_obs
,
e_rewards
,
e_dones
,
e_info
=
eval_envs
.
step
(
e_actions
)
for
idx
,
d
in
enumerate
(
e_dones
):
if
d
:
episode_length
=
e_info
[
'l'
][
idx
]
episode_reward
=
e_info
[
'r'
][
idx
]
win
=
1
if
episode_reward
>
0
else
0
episode_lengths
.
append
(
episode_length
)
episode_rewards
.
append
(
episode_reward
)
eval_win_rates
.
append
(
win
)
if
len
(
episode_lengths
)
>=
local_eval_episodes
:
break
eval_return
=
np
.
mean
(
episode_rewards
[:
local_eval_episodes
])
eval_ep_len
=
np
.
mean
(
episode_lengths
[:
local_eval_episodes
])
eval_win_rate
=
np
.
mean
(
eval_win_rates
[:
local_eval_episodes
])
eval_stats
=
torch
.
tensor
([
eval_return
,
eval_ep_len
,
eval_win_rate
],
dtype
=
torch
.
float32
,
device
=
device
)
# sync the statistics
dist
.
all_reduce
(
eval_stats
,
op
=
dist
.
ReduceOp
.
AVG
)
eval_return
,
eval_ep_len
,
eval_win_rate
=
eval_stats
.
cpu
()
.
numpy
()
if
rank
==
0
:
writer
.
add_scalar
(
"charts/eval_return"
,
eval_return
,
global_step
)
writer
.
add_scalar
(
"charts/eval_ep_len"
,
eval_ep_len
,
global_step
)
writer
.
add_scalar
(
"charts/eval_win_rate"
,
eval_win_rate
,
global_step
)
if
local_rank
==
0
:
eval_time
=
time
.
time
()
-
_start
fprint
(
f
"eval_time={eval_time:.4f}, eval_ep_return={eval_return:.4f}, eval_ep_len={eval_ep_len:.1f}, eval_win_rate={eval_win_rate:.4f}"
)
# Eval with old model
if
args
.
world_size
>
1
:
dist
.
destroy_process_group
()
envs
.
close
()
if
rank
==
0
:
torch
.
save
(
agent
.
state_dict
(),
os
.
path
.
join
(
ckpt_dir
,
f
"agent_final.pth"
))
writer
.
close
()
if
__name__
==
"__main__"
:
main
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment