Commit 366e5f3b authored by sbl1996@126.com's avatar sbl1996@126.com

Add ppo_sp

parent 598465e8
......@@ -18,6 +18,20 @@
## Global
- lp: 2, max 65535 to 2 bytes
- oppo_lp: 2, max 65535 to 2 bytes
- n_my_decks: 1, int
- n_my_extras:
- n_my_hands:
- n_my_graves:
- n_my_removes:
- n_my_monsters:
- n_my_spell_traps:
- n_op_decks:
- n_op_extras:
- n_op_hands:
- n_op_graves:
- n_op_removes:
- n_op_monsters:
- n_op_spell_traps:
- turn: 1, int, trunc to 8
- phase: 1, int, one-hot (10)
- is_first: 1, int, 0: False, 1: True
......
......@@ -43,6 +43,8 @@ class Args:
"""the maximum number of options"""
n_history_actions: int = 16
"""the number of history actions to use"""
num_embeddings: Optional[int] = None
"""the number of embeddings of the agent"""
player: int = -1
"""the player to play as, -1 means random, 0 is the first player, 1 is the second player"""
......@@ -138,9 +140,11 @@ if __name__ == "__main__":
if args.agent:
# count lines of code_list
with open(args.code_list_file, "r") as f:
code_list = f.readlines()
embedding_shape = len(code_list)
embedding_shape = args.num_embeddings
if embedding_shape is None:
with open(args.code_list_file, "r") as f:
code_list = f.readlines()
embedding_shape = len(code_list)
L = args.num_layers
agent = Agent(args.num_channels, L, L, 1, embedding_shape).to(device)
agent = agent.eval()
......
......@@ -375,7 +375,7 @@ def run(local_rank, world_size):
delta = rewards[t] + args.gamma * nextvalues * nextnonterminal - values[t]
advantages[t] = lastgaelam = delta + args.gamma * args.gae_lambda * nextnonterminal * lastgaelam
returns = advantages + values
_start = time.time()
# flatten the batch
b_obs = {
......
import os
import random
import time
from dataclasses import dataclass
from typing import Literal, Optional
import ygoenv
import numpy as np
import optree
import tyro
import torch
import torch.nn as nn
import torch.optim as optim
from torch.distributions import Categorical
import torch.distributed as dist
from torch.cuda.amp import GradScaler, autocast
from ygoai.utils import init_ygopro
from ygoai.rl.utils import RecordEpisodeStatistics
from ygoai.rl.agent import PPOAgent as Agent
from ygoai.rl.dist import reduce_gradidents, mp_start, setup
from ygoai.rl.buffer import create_obs
@dataclass
class Args:
exp_name: str = os.path.basename(__file__)[: -len(".py")]
"""the name of this experiment"""
seed: int = 1
"""seed of the experiment"""
torch_deterministic: bool = False
"""if toggled, `torch.backends.cudnn.deterministic=False`"""
cuda: bool = True
"""if toggled, cuda will be enabled by default"""
# Algorithm specific arguments
env_id: str = "YGOPro-v0"
"""the id of the environment"""
deck: str = "../assets/deck/OldSchool.ydk"
"""the deck file to use"""
deck1: Optional[str] = None
"""the deck file for the first player"""
deck2: Optional[str] = None
"""the deck file for the second player"""
code_list_file: str = "code_list.txt"
"""the code list file for card embeddings"""
embedding_file: Optional[str] = "embeddings_en.npy"
"""the embedding file for card embeddings"""
max_options: int = 24
"""the maximum number of options"""
n_history_actions: int = 16
"""the number of history actions to use"""
play_mode: str = "self+bot"
"""the play mode, can be combination of 'self', 'bot', 'random', like 'self+bot'"""
num_layers: int = 2
"""the number of layers for the agent"""
num_channels: int = 128
"""the number of channels for the agent"""
total_timesteps: int = 1000000000
"""total timesteps of the experiments"""
learning_rate: float = 2.5e-4
"""the learning rate of the optimizer"""
num_envs: int = 8
"""the number of parallel game environments"""
num_steps: int = 128
"""the number of steps to run in each environment per policy rollout"""
anneal_lr: bool = True
"""Toggle learning rate annealing for policy and value networks"""
gamma: float = 0.99
"""the discount factor gamma"""
gae_lambda: float = 0.95
"""the lambda for the general advantage estimation"""
minibatch_size: int = 256
"""the mini-batch size"""
update_epochs: int = 2
"""the K epochs to update the policy"""
norm_adv: bool = True
"""Toggles advantages normalization"""
clip_coef: float = 0.1
"""the surrogate clipping coefficient"""
clip_vloss: bool = True
"""Toggles whether or not to use a clipped loss for the value function, as per the paper."""
ent_coef: float = 0.01
"""coefficient of the entropy"""
vf_coef: float = 0.5
"""coefficient of the value function"""
max_grad_norm: float = 0.5
"""the maximum norm for the gradient clipping"""
target_kl: Optional[float] = None
"""the target KL divergence threshold"""
backend: Literal["gloo", "nccl", "mpi"] = "nccl"
"""the backend for distributed training"""
compile: bool = True
"""whether to use torch.compile to compile the model and functions"""
compile_mode: Optional[str] = None
"""the mode to use for torch.compile"""
torch_threads: Optional[int] = None
"""the number of threads to use for torch, defaults to ($OMP_NUM_THREADS or 2) * world_size"""
env_threads: Optional[int] = None
"""the number of threads to use for envpool, defaults to `num_envs`"""
fp16_train: bool = False
"""if toggled, training will be done in fp16 precision"""
fp16_eval: bool = False
"""if toggled, evaluation will be done in fp16 precision"""
tb_dir: str = "./runs"
"""tensorboard log directory"""
ckpt_dir: str = "./checkpoints"
"""checkpoint directory"""
save_interval: int = 500
"""the number of iterations to save the model"""
log_p: float = 1.0
"""the probability of logging"""
port: int = 12356
"""the port to use for distributed training"""
# to be filled in runtime
local_batch_size: int = 0
"""the local batch size in the local rank (computed in runtime)"""
local_minibatch_size: int = 0
"""the local mini-batch size in the local rank (computed in runtime)"""
local_num_envs: int = 0
"""the number of parallel game environments (in the local rank, computed in runtime)"""
batch_size: int = 0
"""the batch size (computed in runtime)"""
num_iterations: int = 0
"""the number of iterations (computed in runtime)"""
world_size: int = 0
"""the number of processes (computed in runtime)"""
def run(local_rank, world_size):
args = tyro.cli(Args)
args.world_size = world_size
args.local_num_envs = args.num_envs // args.world_size
args.local_batch_size = int(args.local_num_envs * args.num_steps)
args.local_minibatch_size = int(args.minibatch_size // args.world_size)
args.batch_size = int(args.num_envs * args.num_steps)
args.num_iterations = args.total_timesteps // args.batch_size
args.env_threads = args.env_threads or args.num_envs
args.torch_threads = args.torch_threads or (int(os.getenv("OMP_NUM_THREADS", "2")) * args.world_size)
local_torch_threads = args.torch_threads // args.world_size
local_env_threads = args.env_threads // args.world_size
torch.set_num_threads(local_torch_threads)
torch.set_float32_matmul_precision('high')
if args.world_size > 1:
setup(args.backend, local_rank, args.world_size, args.port)
timestamp = int(time.time())
run_name = f"{args.env_id}__{args.exp_name}__{args.seed}__{timestamp}"
writer = None
if local_rank == 0:
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter(os.path.join(args.tb_dir, run_name))
writer.add_text(
"hyperparameters",
"|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])),
)
ckpt_dir = os.path.join(args.ckpt_dir, run_name)
os.makedirs(ckpt_dir, exist_ok=True)
# TRY NOT TO MODIFY: seeding
# CRUCIAL: note that we needed to pass a different seed for each data parallelism worker
args.seed += local_rank
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed - local_rank)
if args.torch_deterministic:
torch.backends.cudnn.deterministic = True
else:
torch.backends.cudnn.benchmark = True
device = torch.device(f"cuda:{local_rank}" if torch.cuda.is_available() and args.cuda else "cpu")
deck = init_ygopro("english", args.deck, args.code_list_file)
args.deck1 = args.deck1 or deck
args.deck2 = args.deck2 or deck
# env setup
envs = ygoenv.make(
task_id=args.env_id,
env_type="gymnasium",
num_envs=args.local_num_envs,
num_threads=local_env_threads,
seed=args.seed,
deck1=args.deck1,
deck2=args.deck2,
max_options=args.max_options,
n_history_actions=args.n_history_actions,
play_mode=args.play_mode,
)
envs.num_envs = args.local_num_envs
obs_space = envs.observation_space
action_shape = envs.action_space.shape
if local_rank == 0:
print(f"obs_space={obs_space}, action_shape={action_shape}")
envs = RecordEpisodeStatistics(envs)
if args.embedding_file:
embeddings = np.load(args.embedding_file)
embedding_shape = embeddings.shape
else:
embedding_shape = None
L = args.num_layers
agent = Agent(args.num_channels, L, L, 1, embedding_shape).to(device)
if args.embedding_file:
agent.load_embeddings(embeddings)
optimizer = optim.Adam(agent.parameters(), lr=args.learning_rate, eps=1e-5)
scaler = GradScaler(enabled=args.fp16_train, init_scale=2 ** 8)
def masked_mean(x, valid):
x = x.masked_fill(~valid, 0)
return x.sum() / valid.float().sum()
def train_step(agent, scaler, mb_obs, mb_actions, mb_logprobs, mb_advantages, mb_returns, mb_values):
with autocast(enabled=args.fp16_train):
_, newlogprob, entropy, newvalue, valid = agent.get_action_and_value(mb_obs, mb_actions.long())
logratio = newlogprob - mb_logprobs
ratio = logratio.exp()
with torch.no_grad():
# calculate approx_kl http://joschu.net/blog/kl-approx.html
old_approx_kl = (-logratio).mean()
approx_kl = ((ratio - 1) - logratio).mean()
clipfrac = ((ratio - 1.0).abs() > args.clip_coef).float().mean()
if args.norm_adv:
mb_advantages = (mb_advantages - mb_advantages.mean()) / (mb_advantages.std() + 1e-8)
# Policy loss
pg_loss1 = -mb_advantages * ratio
pg_loss2 = -mb_advantages * torch.clamp(ratio, 1 - args.clip_coef, 1 + args.clip_coef)
pg_loss = torch.max(pg_loss1, pg_loss2)
pg_loss = masked_mean(pg_loss, valid)
# Value loss
newvalue = newvalue.view(-1)
if args.clip_vloss:
v_loss_unclipped = (newvalue - mb_returns) ** 2
v_clipped = mb_values + torch.clamp(
newvalue - mb_values,
-args.clip_coef,
args.clip_coef,
)
v_loss_clipped = (v_clipped - mb_returns) ** 2
v_loss_max = torch.max(v_loss_unclipped, v_loss_clipped)
v_loss = 0.5 * v_loss_max
else:
v_loss = 0.5 * ((newvalue - mb_returns) ** 2)
v_loss = masked_mean(v_loss, valid)
entropy_loss = masked_mean(entropy, valid)
loss = pg_loss - args.ent_coef * entropy_loss + v_loss * args.vf_coef
optimizer.zero_grad()
scaler.scale(loss).backward()
scaler.unscale_(optimizer)
return old_approx_kl, approx_kl, clipfrac, pg_loss, v_loss, entropy_loss
def predict_step(agent, next_obs):
with torch.no_grad():
with autocast(enabled=args.fp16_eval):
logits, values = agent(next_obs)
return logits, values
if args.compile:
train_step = torch.compile(train_step, mode=args.compile_mode)
predict_step = torch.compile(predict_step, mode=args.compile_mode)
def to_tensor(x, dtype=torch.float32):
return optree.tree_map(lambda x: torch.from_numpy(x).to(device=device, dtype=dtype, non_blocking=True), x)
# ALGO Logic: Storage setup
obs = create_obs(obs_space, (args.num_steps, args.local_num_envs), device)
actions = torch.zeros((args.num_steps, args.local_num_envs) + action_shape).to(device)
logprobs = torch.zeros((args.num_steps, args.local_num_envs)).to(device)
rewards = torch.zeros((args.num_steps, args.local_num_envs)).to(device)
dones = torch.zeros((args.num_steps, args.local_num_envs)).to(device)
values = torch.zeros((args.num_steps, args.local_num_envs)).to(device)
to_plays = torch.zeros((args.num_steps, args.local_num_envs)).to(device)
avg_ep_returns = []
avg_win_rates = []
avg_sp_win_rates = []
# TRY NOT TO MODIFY: start the game
global_step = 0
warmup_steps = 0
start_time = time.time()
next_obs, info = envs.reset()
next_obs = to_tensor(next_obs, dtype=torch.uint8)
next_to_play = to_tensor(info["to_play"])
next_done = torch.zeros(args.local_num_envs, device=device)
for iteration in range(1, args.num_iterations + 1):
# Annealing the rate if instructed to do so.
if args.anneal_lr:
frac = 1.0 - (iteration - 1.0) / args.num_iterations
lrnow = frac * args.learning_rate
optimizer.param_groups[0]["lr"] = lrnow
model_time = 0
env_time = 0
collect_start = time.time()
for step in range(0, args.num_steps):
global_step += args.num_envs
for key in obs:
obs[key][step] = next_obs[key]
dones[step] = next_done
to_plays[step] = next_to_play
_start = time.time()
logits, value = predict_step(agent, next_obs)
probs = Categorical(logits=logits)
action = probs.sample()
logprob = probs.log_prob(action)
values[step] = value.flatten()
actions[step] = action
logprobs[step] = logprob
action = action.cpu().numpy()
model_time += time.time() - _start
_start = time.time()
next_obs, reward, next_done_, info = envs.step(action)
next_to_play = to_tensor(info["to_play"])
env_time += time.time() - _start
rewards[step] = to_tensor(reward)
next_obs, next_done = to_tensor(next_obs, torch.uint8), to_tensor(next_done_)
if not writer:
continue
for idx, d in enumerate(next_done_):
if d:
episode_length = info['l'][idx]
episode_reward = info['r'][idx]
avg_ep_returns.append(episode_reward)
if info['is_selfplay'][idx]:
# win rate for the first player
pl = 1 if to_play[idx] == 0 else -1
winner = 0 if episode_reward * pl > 0 else 1
avg_sp_win_rates.append(1 - winner)
else:
# win rate of agent
winner = 0 if episode_reward > 0 else 1
avg_win_rates.append(1 - winner)
if random.random() < args.log_p:
n = 100
if random.random() < 10/n or iteration <= 2:
writer.add_scalar("charts/episodic_return", info["r"][idx], global_step)
writer.add_scalar("charts/episodic_length", info["l"][idx], global_step)
print(f"global_step={global_step}, e_ret={episode_reward}, e_len={episode_length}")
if len(avg_ep_returns) > n:
writer.add_scalar("charts/avg_ep_return", np.mean(avg_ep_returns), global_step)
avg_ep_returns = []
if len(avg_win_rates) > n:
writer.add_scalar("charts/avg_win_rate", np.mean(avg_win_rates), global_step)
avg_win_rates = []
if len(avg_sp_win_rates) > n:
writer.add_scalar("charts/avg_sp_win_rate", np.mean(avg_sp_win_rates), global_step)
avg_sp_win_rates = []
collect_time = time.time() - collect_start
# bootstrap value if not done
with torch.no_grad():
next_value = agent.get_value(next_obs).reshape(1, -1)
advantages = torch.zeros_like(rewards).to(device)
lastgaelam = 0
next_to_play_ = next_to_play
for t in reversed(range(args.num_steps)):
to_play = to_plays[t]
if t == args.num_steps - 1:
nextnonterminal = 1.0 - next_done
nextvalues = next_value
else:
nextnonterminal = 1.0 - dones[t + 1]
nextvalues = values[t + 1]
sp = 2.0 * (to_play == next_to_play_).float() - 1.0
delta = rewards[t] + args.gamma * nextvalues * sp * nextnonterminal - values[t]
lastgaelam = delta + args.gamma * args.gae_lambda * nextnonterminal * lastgaelam
# TODO: experiment with it
# lastgaelam = lastgaelam * sp
advantages[t] = lastgaelam
next_to_play_ = to_play
returns = advantages + values
_start = time.time()
# flatten the batch
b_obs = {
k: v.reshape((-1,) + v.shape[2:])
for k, v in obs.items()
}
b_logprobs = logprobs.reshape(-1)
b_actions = actions.reshape((-1,) + action_shape)
b_advantages = advantages.reshape(-1)
b_returns = returns.reshape(-1)
b_values = values.reshape(-1)
# Optimizing the policy and value network
b_inds = np.arange(args.local_batch_size)
clipfracs = []
for epoch in range(args.update_epochs):
np.random.shuffle(b_inds)
for start in range(0, args.local_batch_size, args.local_minibatch_size):
end = start + args.local_minibatch_size
mb_inds = b_inds[start:end]
mb_obs = {
k: v[mb_inds] for k, v in b_obs.items()
}
old_approx_kl, approx_kl, clipfrac, pg_loss, v_loss, entropy_loss = \
train_step(agent, scaler, mb_obs, b_actions[mb_inds], b_logprobs[mb_inds], b_advantages[mb_inds],
b_returns[mb_inds], b_values[mb_inds])
reduce_gradidents(agent, args.world_size)
nn.utils.clip_grad_norm_(agent.parameters(), args.max_grad_norm)
scaler.step(optimizer)
scaler.update()
clipfracs.append(clipfrac.item())
if args.target_kl is not None and approx_kl > args.target_kl:
break
train_time = time.time() - _start
if local_rank == 0:
print(f"train_time={train_time:.4f}, collect_time={collect_time:.4f}, model_time={model_time:.4f}, env_time={env_time:.4f}")
y_pred, y_true = b_values.cpu().numpy(), b_returns.cpu().numpy()
var_y = np.var(y_true)
explained_var = np.nan if var_y == 0 else 1 - np.var(y_true - y_pred) / var_y
# TRY NOT TO MODIFY: record rewards for plotting purposes
if local_rank == 0:
if iteration % args.save_interval == 0 or iteration == args.num_iterations:
torch.save(agent.state_dict(), os.path.join(ckpt_dir, f"agent.pth"))
writer.add_scalar("charts/learning_rate", optimizer.param_groups[0]["lr"], global_step)
writer.add_scalar("losses/value_loss", v_loss.item(), global_step)
writer.add_scalar("losses/policy_loss", pg_loss.item(), global_step)
writer.add_scalar("losses/entropy", entropy_loss.item(), global_step)
writer.add_scalar("losses/old_approx_kl", old_approx_kl.item(), global_step)
writer.add_scalar("losses/approx_kl", approx_kl.item(), global_step)
writer.add_scalar("losses/clipfrac", np.mean(clipfracs), global_step)
writer.add_scalar("losses/explained_variance", explained_var, global_step)
SPS = int((global_step - warmup_steps) / (time.time() - start_time))
# Warmup at first few iterations for accurate SPS measurement
SPS_warmup_iters = 10
if iteration == SPS_warmup_iters:
start_time = time.time()
warmup_steps = global_step
if iteration > SPS_warmup_iters:
print("SPS:", SPS)
writer.add_scalar("charts/SPS", SPS, global_step)
if args.world_size > 1:
dist.destroy_process_group()
envs.close()
if local_rank == 0:
writer.close()
if __name__ == "__main__":
mp_start(run)
......@@ -105,6 +105,7 @@ class Encoder(nn.Module):
self.a_option_embed = nn.Embedding(6, c // divisor // 2)
self.a_number_embed = nn.Embedding(13, c // divisor // 2)
self.a_place_embed = nn.Embedding(31, c // divisor // 2)
# TODO: maybe same embedding as attribute_embed
self.a_attrib_embed = nn.Embedding(10, c // divisor // 2)
self.a_feat_norm = nn.LayerNorm(c, elementwise_affine=affine)
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment