Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Sign in / Register
Toggle navigation
Y
ygo-agent
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Locked Files
Issues
0
Issues
0
List
Boards
Labels
Service Desk
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Security & Compliance
Security & Compliance
Dependency List
License Compliance
Packages
Packages
List
Container Registry
Analytics
Analytics
CI / CD
Code Review
Insights
Issues
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Biluo Shen
ygo-agent
Commits
1487b081
Commit
1487b081
authored
Mar 22, 2024
by
Biluo Shen
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
(WIP) add cleanba_ppo
parent
80707a8c
Changes
6
Hide whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
607 additions
and
11 deletions
+607
-11
docs/feature_engineering.md
docs/feature_engineering.md
+4
-1
scripts/battle.py
scripts/battle.py
+1
-1
scripts/ppo_c.py
scripts/ppo_c.py
+573
-0
scripts/ppo_osfp.py
scripts/ppo_osfp.py
+13
-8
ygoai/rl/agent.py
ygoai/rl/agent.py
+2
-1
ygoai/rl/ppo.py
ygoai/rl/ppo.py
+14
-0
No files found.
docs/feature_engineering.md
View file @
1487b081
...
...
@@ -88,4 +88,7 @@
## History Actions
-
0,1: card id, uint16 -> 2 uint8
-
others same as legal actions
-
2-12 same as legal actions
-
13: player, discrete, 0: me, 1: oppo
-
14: turn, discrete, trunc to 3
scripts/battle.py
View file @
1487b081
...
...
@@ -41,7 +41,7 @@ class Args:
"""the language to use"""
max_options
:
int
=
24
"""the maximum number of options"""
n_history_actions
:
int
=
16
n_history_actions
:
int
=
32
"""the number of history actions to use"""
num_embeddings
:
Optional
[
int
]
=
None
"""the number of embeddings of the agent"""
...
...
scripts/ppo_c.py
0 → 100644
View file @
1487b081
import
os
import
random
import
time
from
collections
import
deque
from
queue
import
Queue
from
dataclasses
import
dataclass
,
field
from
typing
import
Optional
,
List
import
ygoenv
import
optree
import
numpy
as
np
import
tyro
import
torch
import
torch.nn
as
nn
import
torch.optim
as
optim
from
torch.distributions
import
Categorical
import
torch.multiprocessing
as
mp
from
torch.cuda.amp
import
GradScaler
,
autocast
from
ygoai.utils
import
init_ygopro
from
ygoai.rl.utils
import
RecordEpisodeStatistics
,
to_tensor
,
load_embeddings
from
ygoai.rl.agent
import
PPOAgent
as
Agent
from
ygoai.rl.dist
import
reduce_gradidents
,
setup
,
fprint
from
ygoai.rl.buffer
import
create_obs
from
ygoai.rl.ppo
import
bootstrap_value_selfplay
from
ygoai.rl.eval
import
evaluate
@
dataclass
class
Args
:
exp_name
:
str
=
os
.
path
.
basename
(
__file__
)[:
-
len
(
".py"
)]
"""the name of this experiment"""
seed
:
int
=
1
"""seed of the experiment"""
torch_deterministic
:
bool
=
False
"""if toggled, `torch.backends.cudnn.deterministic=False`"""
cuda
:
bool
=
True
"""if toggled, cuda will be enabled by default"""
port
:
int
=
29500
"""the port to use for distributed training"""
# Algorithm specific arguments
env_id
:
str
=
"YGOPro-v0"
"""the id of the environment"""
deck
:
str
=
"../assets/deck"
"""the deck file to use"""
deck1
:
Optional
[
str
]
=
None
"""the deck file for the first player"""
deck2
:
Optional
[
str
]
=
None
"""the deck file for the second player"""
code_list_file
:
str
=
"code_list.txt"
"""the code list file for card embeddings"""
embedding_file
:
Optional
[
str
]
=
None
"""the embedding file for card embeddings"""
max_options
:
int
=
24
"""the maximum number of options"""
n_history_actions
:
int
=
32
"""the number of history actions to use"""
num_layers
:
int
=
2
"""the number of layers for the agent"""
num_channels
:
int
=
128
"""the number of channels for the agent"""
checkpoint
:
Optional
[
str
]
=
None
"""the checkpoint to load the model from"""
total_timesteps
:
int
=
2000000000
"""total timesteps of the experiments"""
learning_rate
:
float
=
2.5e-4
"""the learning rate of the optimizer"""
local_num_envs
:
int
=
128
"""the number of parallel game environments per actor"""
num_actor_threads
:
int
=
1
"the number of actor threads to use"
num_steps
:
int
=
128
"""the number of steps to run in each environment per policy rollout"""
anneal_lr
:
bool
=
True
"""Toggle learning rate annealing for policy and value networks"""
gamma
:
float
=
1.0
"""the discount factor gamma"""
gae_lambda
:
float
=
0.98
"""the lambda for the general advantage estimation"""
num_minibatches
:
int
=
4
"the number of mini-batches"
update_epochs
:
int
=
2
"""the K epochs to update the policy"""
norm_adv
:
bool
=
True
"""Toggles advantages normalization"""
clip_coef
:
float
=
0.2
"""the surrogate clipping coefficient"""
clip_vloss
:
bool
=
True
"""Toggles whether or not to use a clipped loss for the value function, as per the paper."""
ent_coef
:
float
=
0.01
"""coefficient of the entropy"""
vf_coef
:
float
=
0.5
"""coefficient of the value function"""
max_grad_norm
:
float
=
1.0
"""the maximum norm for the gradient clipping"""
learn_opponent
:
bool
=
True
"""if toggled, the samples from the opponent will be used to train the agent"""
collect_length
:
Optional
[
int
]
=
None
"""the length of the buffer, only the first `num_steps` will be used for training (partial GAE)"""
actor_device_ids
:
List
[
int
]
=
field
(
default_factory
=
lambda
:
[
0
])
"the device ids that actor workers will use"
learner_device_ids
:
List
[
int
]
=
field
(
default_factory
=
lambda
:
[
0
])
"the device ids that learner workers will use"
compile
:
Optional
[
str
]
=
None
"""Compile mode of torch.compile, None for no compilation"""
local_torch_threads
:
Optional
[
int
]
=
None
"""the number of threads to use for torch, defaults to ($OMP_NUM_THREADS or 2)"""
local_env_threads
:
Optional
[
int
]
=
16
"""the number of threads to use for envpool in each actor"""
fp16_train
:
bool
=
False
"""if toggled, training will be done in fp16 precision"""
fp16_eval
:
bool
=
False
"""if toggled, evaluation will be done in fp16 precision"""
tb_dir
:
str
=
"./runs"
"""tensorboard log directory"""
ckpt_dir
:
str
=
"./checkpoints"
"""checkpoint directory"""
save_interval
:
int
=
500
"""the number of iterations to save the model"""
log_p
:
float
=
1.0
"""the probability of logging"""
eval_episodes
:
int
=
128
"""the number of episodes to evaluate the model"""
eval_interval
:
int
=
50
"""the number of iterations to evaluate the model"""
# to be filled in runtime
num_envs
:
int
=
0
"""the number of parallel game environments"""
local_batch_size
:
int
=
0
"""the local batch size in the local rank (computed in runtime)"""
local_minibatch_size
:
int
=
0
"""the local mini-batch size in the local rank (computed in runtime)"""
batch_size
:
int
=
0
"""the batch size (computed in runtime)"""
num_iterations
:
int
=
0
"""the number of iterations (computed in runtime)"""
world_size
:
int
=
0
"""the number of processes (computed in runtime)"""
def
make_env
(
args
,
num_envs
,
num_threads
,
mode
=
'self'
):
envs
=
ygoenv
.
make
(
task_id
=
args
.
env_id
,
env_type
=
"gymnasium"
,
num_envs
=
num_envs
,
num_threads
=
num_threads
,
seed
=
args
.
seed
,
deck1
=
args
.
deck1
,
deck2
=
args
.
deck2
,
max_options
=
args
.
max_options
,
n_history_actions
=
args
.
n_history_actions
,
play_mode
=
'self'
,
)
envs
.
num_envs
=
num_envs
envs
=
RecordEpisodeStatistics
(
envs
)
return
envs
def
actor
(
args
,
a_rank
,
rollout_queues
:
List
[
Queue
],
param_queue
:
Queue
,
run_name
,
device_thread_id
,
):
if
a_rank
==
0
:
from
torch.utils.tensorboard
import
SummaryWriter
writer
=
SummaryWriter
(
os
.
path
.
join
(
args
.
tb_dir
,
run_name
))
writer
.
add_text
(
"hyperparameters"
,
"|param|value|
\n
|-|-|
\n
%
s"
%
(
"
\n
"
.
join
([
f
"|{key}|{value}|"
for
key
,
value
in
vars
(
args
)
.
items
()])),
)
else
:
writer
=
None
torch
.
set_num_threads
(
args
.
local_torch_threads
)
torch
.
set_float32_matmul_precision
(
'high'
)
device
=
torch
.
device
(
f
"cuda:{device_thread_id}"
if
torch
.
cuda
.
is_available
()
and
args
.
cuda
else
"cpu"
)
deck
=
init_ygopro
(
args
.
env_id
,
"english"
,
args
.
deck
,
args
.
code_list_file
)
args
.
deck1
=
args
.
deck1
or
deck
args
.
deck2
=
args
.
deck2
or
deck
# env setup
envs
=
make_env
(
args
,
args
.
local_num_envs
,
args
.
local_env_threads
)
obs_space
=
envs
.
env
.
observation_space
action_shape
=
envs
.
env
.
action_space
.
shape
if
a_rank
==
0
:
fprint
(
f
"obs_space={obs_space}, action_shape={action_shape}"
)
envs_per_thread
=
args
.
local_num_envs
//
args
.
local_env_threads
local_eval_episodes
=
args
.
eval_episodes
//
args
.
world_size
local_eval_num_envs
=
local_eval_episodes
local_eval_num_threads
=
max
(
1
,
local_eval_num_envs
//
envs_per_thread
)
eval_envs
=
make_env
(
args
,
local_eval_num_envs
,
local_eval_num_threads
,
mode
=
'bot'
)
if
args
.
embedding_file
:
embeddings
=
load_embeddings
(
args
.
embedding_file
,
args
.
code_list_file
)
embedding_shape
=
embeddings
.
shape
else
:
embedding_shape
=
None
L
=
args
.
num_layers
agent
=
Agent
(
args
.
num_channels
,
L
,
L
,
embedding_shape
)
.
to
(
device
)
agent
.
eval
()
def
predict_step
(
agent
:
Agent
,
next_obs
):
with
torch
.
no_grad
():
with
autocast
(
enabled
=
args
.
fp16_eval
):
logits
,
value
,
valid
=
agent
(
next_obs
)
return
logits
,
value
if
args
.
compile
:
# It seems that using torch.compile twice cause segfault at start, so we use torch.jit.trace here
predict_step
=
torch
.
compile
(
predict_step
,
mode
=
args
.
compile
)
agent_r
=
agent
# example_obs = create_obs(envs.observation_space, (args.local_num_envs,), device=device)
# with torch.no_grad():
# agent_r = torch.jit.trace(agent, (example_obs,), check_tolerance=False, check_trace=False)
else
:
agent_r
=
agent
obs
=
create_obs
(
obs_space
,
(
args
.
num_steps
,
args
.
local_num_envs
),
device
)
actions
=
torch
.
zeros
((
args
.
num_steps
,
args
.
local_num_envs
)
+
action_shape
)
.
to
(
device
)
logprobs
=
torch
.
zeros
((
args
.
num_steps
,
args
.
local_num_envs
))
.
to
(
device
)
rewards
=
torch
.
zeros
((
args
.
num_steps
,
args
.
local_num_envs
))
.
to
(
device
)
dones
=
torch
.
zeros
((
args
.
num_steps
,
args
.
local_num_envs
),
dtype
=
torch
.
bool
)
.
to
(
device
)
values
=
torch
.
zeros
((
args
.
num_steps
,
args
.
local_num_envs
))
.
to
(
device
)
learns
=
torch
.
zeros
((
args
.
num_steps
,
args
.
local_num_envs
),
dtype
=
torch
.
bool
)
.
to
(
device
)
avg_ep_returns
=
deque
(
maxlen
=
1000
)
avg_win_rates
=
deque
(
maxlen
=
1000
)
global_step
=
0
warmup_steps
=
0
start_time
=
time
.
time
()
next_obs
,
info
=
envs
.
reset
()
next_obs
=
to_tensor
(
next_obs
,
device
,
dtype
=
torch
.
uint8
)
next_to_play_
=
info
[
"to_play"
]
next_to_play
=
to_tensor
(
next_to_play_
,
device
)
next_done
=
torch
.
zeros
(
args
.
local_num_envs
,
device
=
device
,
dtype
=
torch
.
bool
)
ai_player1_
=
np
.
concatenate
([
np
.
zeros
(
args
.
local_num_envs
//
2
,
dtype
=
np
.
int64
),
np
.
ones
(
args
.
local_num_envs
//
2
,
dtype
=
np
.
int64
)
])
np
.
random
.
shuffle
(
ai_player1_
)
ai_player1
=
to_tensor
(
ai_player1_
,
device
,
dtype
=
next_to_play
.
dtype
)
next_value1
=
next_value2
=
0
step
=
0
params_buffer
=
param_queue
.
get
()[
1
]
for
iteration
in
range
(
1
,
args
.
num_iterations
):
if
iteration
>
2
:
param_queue
.
get
()
agent
.
load_state_dict
(
params_buffer
)
model_time
=
0
env_time
=
0
collect_start
=
time
.
time
()
while
step
<
args
.
num_steps
:
for
key
in
obs
:
obs
[
key
][
step
]
=
next_obs
[
key
]
dones
[
step
]
=
next_done
learn
=
next_to_play
==
ai_player1
learns
[
step
]
=
learn
_start
=
time
.
time
()
logits
,
value
=
predict_step
(
agent_r
,
next_obs
)
value
=
value
.
flatten
()
probs
=
Categorical
(
logits
=
logits
)
action
=
probs
.
sample
()
logprob
=
probs
.
log_prob
(
action
)
values
[
step
]
=
value
actions
[
step
]
=
action
logprobs
[
step
]
=
logprob
action
=
action
.
cpu
()
.
numpy
()
model_time
+=
time
.
time
()
-
_start
next_nonterminal
=
1
-
next_done
.
float
()
next_value1
=
torch
.
where
(
learn
,
value
,
next_value1
)
*
next_nonterminal
next_value2
=
torch
.
where
(
learn
,
next_value2
,
value
)
*
next_nonterminal
_start
=
time
.
time
()
to_play
=
next_to_play_
next_obs
,
reward
,
next_done_
,
info
=
envs
.
step
(
action
)
next_to_play_
=
info
[
"to_play"
]
next_to_play
=
to_tensor
(
next_to_play_
,
device
)
env_time
+=
time
.
time
()
-
_start
rewards
[
step
]
=
to_tensor
(
reward
,
device
)
next_obs
,
next_done
=
to_tensor
(
next_obs
,
device
,
torch
.
uint8
),
to_tensor
(
next_done_
,
device
,
torch
.
bool
)
step
+=
1
global_step
+=
args
.
num_envs
if
not
writer
:
continue
for
idx
,
d
in
enumerate
(
next_done_
):
if
d
:
pl
=
1
if
to_play
[
idx
]
==
ai_player1_
[
idx
]
else
-
1
episode_length
=
info
[
'l'
][
idx
]
episode_reward
=
info
[
'r'
][
idx
]
*
pl
win
=
1
if
episode_reward
>
0
else
0
avg_ep_returns
.
append
(
episode_reward
)
avg_win_rates
.
append
(
win
)
if
random
.
random
()
<
args
.
log_p
:
n
=
100
if
random
.
random
()
<
10
/
n
or
iteration
<=
1
:
writer
.
add_scalar
(
"charts/episodic_return"
,
info
[
"r"
][
idx
],
global_step
)
writer
.
add_scalar
(
"charts/episodic_length"
,
info
[
"l"
][
idx
],
global_step
)
fprint
(
f
"global_step={global_step}, e_ret={episode_reward}, e_len={episode_length}"
)
if
random
.
random
()
<
1
/
n
:
writer
.
add_scalar
(
"charts/avg_ep_return"
,
np
.
mean
(
avg_ep_returns
),
global_step
)
writer
.
add_scalar
(
"charts/avg_win_rate"
,
np
.
mean
(
avg_win_rates
),
global_step
)
collect_time
=
time
.
time
()
-
collect_start
fprint
(
f
"collect_time={collect_time:.4f}, model_time={model_time:.4f}, env_time={env_time:.4f}"
)
_start
=
time
.
time
()
# bootstrap value if not done
with
torch
.
no_grad
():
value
=
predict_step
(
agent_r
,
next_obs
)[
1
]
.
reshape
(
-
1
)
nextvalues1
=
torch
.
where
(
next_to_play
==
ai_player1
,
value
,
next_value1
)
nextvalues2
=
torch
.
where
(
next_to_play
!=
ai_player1
,
value
,
next_value2
)
step
=
0
for
iq
,
rq
in
enumerate
(
rollout_queues
):
n_e
=
args
.
local_num_envs
//
len
(
rollout_queues
)
start
=
iq
*
n_e
end
=
start
+
n_e
data
=
[]
d
=
optree
.
tree_map
(
lambda
x
:
x
[:,
start
:
end
],
(
obs
,
actions
,
logprobs
,
rewards
,
dones
,
values
,
learns
))
for
v
in
d
:
data
.
append
(
v
)
for
v
in
[
next_done
,
nextvalues1
,
nextvalues2
]:
data
.
append
(
v
[
start
:
end
])
rq
.
put
(
data
)
SPS
=
int
((
global_step
-
warmup_steps
)
/
(
time
.
time
()
-
start_time
))
# Warmup at first few iterations for accurate SPS measurement
SPS_warmup_iters
=
10
if
iteration
==
SPS_warmup_iters
:
start_time
=
time
.
time
()
warmup_steps
=
global_step
if
iteration
>
SPS_warmup_iters
:
if
a_rank
==
0
:
fprint
(
f
"SPS: {SPS}"
)
if
args
.
eval_interval
and
iteration
%
args
.
eval_interval
==
0
:
# Eval with rule-based policy
_start
=
time
.
time
()
eval_return
=
evaluate
(
eval_envs
,
agent_r
,
local_eval_episodes
,
device
,
args
.
fp16_eval
)[
0
]
eval_stats
=
torch
.
tensor
(
eval_return
,
dtype
=
torch
.
float32
,
device
=
device
)
# sync the statistics
# if args.world_size > 1:
# dist.all_reduce(eval_stats, op=dist.ReduceOp.AVG)
eval_return
=
eval_stats
.
cpu
()
.
numpy
()
if
a_rank
==
0
:
writer
.
add_scalar
(
"charts/eval_return"
,
eval_return
,
global_step
)
eval_time
=
time
.
time
()
-
_start
fprint
(
f
"eval_time={eval_time:.4f}, eval_ep_return={eval_return:.4f}"
)
def
learner
(
args
:
Args
,
l_rank
,
rollout_queue
:
Queue
,
param_queue
:
Queue
,
run_name
,
ckpt_dir
,
device_thread_id
,
):
num_learners
=
len
(
args
.
learner_device_ids
)
if
len
(
args
.
learner_device_ids
)
>
1
:
setup
(
'nccl'
,
l_rank
,
num_learners
,
args
.
port
)
local_batch_size
=
args
.
local_batch_size
//
num_learners
local_minibatch_size
=
args
.
local_minibatch_size
//
num_learners
torch
.
set_num_threads
(
args
.
local_torch_threads
)
torch
.
set_float32_matmul_precision
(
'high'
)
args
.
seed
+=
l_rank
random
.
seed
(
args
.
seed
)
np
.
random
.
seed
(
args
.
seed
)
torch
.
manual_seed
(
args
.
seed
-
l_rank
)
if
args
.
torch_deterministic
:
torch
.
backends
.
cudnn
.
deterministic
=
True
else
:
torch
.
backends
.
cudnn
.
benchmark
=
True
device
=
torch
.
device
(
f
"cuda:{device_thread_id}"
if
torch
.
cuda
.
is_available
()
and
args
.
cuda
else
"cpu"
)
if
args
.
embedding_file
:
embeddings
=
load_embeddings
(
args
.
embedding_file
,
args
.
code_list_file
)
embedding_shape
=
embeddings
.
shape
else
:
embedding_shape
=
None
L
=
args
.
num_layers
agent
=
Agent
(
args
.
num_channels
,
L
,
L
,
embedding_shape
)
.
to
(
device
)
from
ygoai.rl.ppo
import
train_step
if
args
.
compile
:
train_step
=
torch
.
compile
(
train_step
,
mode
=
args
.
compile
)
optim_params
=
list
(
agent
.
parameters
())
optimizer
=
optim
.
Adam
(
optim_params
,
lr
=
args
.
learning_rate
,
eps
=
1e-5
)
scaler
=
GradScaler
(
enabled
=
args
.
fp16_train
,
init_scale
=
2
**
8
)
global_step
=
0
first_in_group
=
l_rank
%
(
num_learners
//
(
len
(
args
.
actor_device_ids
)
*
args
.
num_actor_threads
))
==
0
if
first_in_group
:
param_queue
.
put
((
"Init"
,
agent
.
state_dict
()))
for
iteration
in
range
(
1
,
args
.
num_iterations
):
bootstrap_start
=
time
.
time
()
_start
=
time
.
time
()
data
=
rollout_queue
.
get
()
wait_time
=
time
.
time
()
-
_start
obs
,
actions
,
logprobs
,
rewards
,
dones
,
values
,
learns
,
next_done
,
nextvalues1
,
nextvalues2
\
=
optree
.
tree_map
(
lambda
x
:
x
.
to
(
device
=
device
,
non_blocking
=
True
),
data
)
advantages
=
bootstrap_value_selfplay
(
values
,
rewards
,
dones
,
learns
,
nextvalues1
,
nextvalues2
,
next_done
,
args
.
gamma
,
args
.
gae_lambda
)
bootstrap_time
=
time
.
time
()
-
bootstrap_start
_start
=
time
.
time
()
# flatten the batch
b_obs
=
{
k
:
v
[:
args
.
num_steps
]
.
reshape
((
-
1
,)
+
v
.
shape
[
2
:])
for
k
,
v
in
obs
.
items
()
}
b_actions
=
actions
[:
args
.
num_steps
]
.
flatten
(
0
,
1
)
b_logprobs
=
logprobs
[:
args
.
num_steps
]
.
reshape
(
-
1
)
b_advantages
=
advantages
[:
args
.
num_steps
]
.
reshape
(
-
1
)
b_values
=
values
[:
args
.
num_steps
]
.
reshape
(
-
1
)
b_returns
=
b_advantages
+
b_values
if
args
.
learn_opponent
:
b_learns
=
torch
.
ones_like
(
b_values
,
dtype
=
torch
.
bool
)
else
:
b_learns
=
learns
[:
args
.
num_steps
]
.
reshape
(
-
1
)
# Optimizing the policy and value network
b_inds
=
np
.
arange
(
local_batch_size
)
clipfracs
=
[]
for
epoch
in
range
(
args
.
update_epochs
):
np
.
random
.
shuffle
(
b_inds
)
for
start
in
range
(
0
,
local_batch_size
,
local_minibatch_size
):
end
=
start
+
local_minibatch_size
mb_inds
=
b_inds
[
start
:
end
]
mb_obs
=
{
k
:
v
[
mb_inds
]
for
k
,
v
in
b_obs
.
items
()
}
old_approx_kl
,
approx_kl
,
clipfrac
,
pg_loss
,
v_loss
,
entropy_loss
=
\
train_step
(
agent
,
optimizer
,
scaler
,
mb_obs
,
b_actions
[
mb_inds
],
b_logprobs
[
mb_inds
],
b_advantages
[
mb_inds
],
b_returns
[
mb_inds
],
b_values
[
mb_inds
],
b_learns
[
mb_inds
],
args
)
reduce_gradidents
(
optim_params
,
num_learners
)
nn
.
utils
.
clip_grad_norm_
(
optim_params
,
args
.
max_grad_norm
)
scaler
.
step
(
optimizer
)
scaler
.
update
()
clipfracs
.
append
(
clipfrac
.
item
())
global_step
+=
args
.
num_envs
if
first_in_group
:
param_queue
.
put
((
"Done"
,
None
))
if
l_rank
==
0
:
train_time
=
time
.
time
()
-
_start
fprint
(
f
"train_time={train_time:.4f}, bootstrap_time={bootstrap_time:.4f}, wait_time={wait_time:.4f}"
)
if
iteration
%
args
.
save_interval
==
0
:
torch
.
save
(
agent
.
state_dict
(),
os
.
path
.
join
(
ckpt_dir
,
f
"agent.pt"
))
y_pred
,
y_true
=
b_values
.
cpu
()
.
numpy
(),
b_returns
.
cpu
()
.
numpy
()
var_y
=
np
.
var
(
y_true
)
explained_var
=
np
.
nan
if
var_y
==
0
else
1
-
np
.
var
(
y_true
-
y_pred
)
/
var_y
fprint
(
f
"global_step={global_step}, value_loss={v_loss.item():.4f}, policy_loss={pg_loss.item():.4f}, entropy_loss={entropy_loss.item():.4f}"
)
# writer.add_scalar("charts/learning_rate", optimizer.param_groups[0]["lr"], global_step)
# writer.add_scalar("losses/value_loss", v_loss.item(), global_step)
# writer.add_scalar("losses/policy_loss", pg_loss.item(), global_step)
# writer.add_scalar("losses/entropy", entropy_loss.item(), global_step)
# writer.add_scalar("losses/old_approx_kl", old_approx_kl.item(), global_step)
# writer.add_scalar("losses/approx_kl", approx_kl.item(), global_step)
# writer.add_scalar("losses/clipfrac", np.mean(clipfracs), global_step)
# writer.add_scalar("losses/explained_variance", explained_var, global_step)
if
__name__
==
"__main__"
:
world_size
=
int
(
os
.
environ
.
get
(
"WORLD_SIZE"
,
1
))
args
=
tyro
.
cli
(
Args
)
args
.
local_batch_size
=
int
(
args
.
local_num_envs
*
args
.
num_steps
*
args
.
num_actor_threads
*
len
(
args
.
actor_device_ids
))
args
.
local_minibatch_size
=
int
(
args
.
local_batch_size
//
args
.
num_minibatches
)
assert
(
args
.
local_num_envs
%
len
(
args
.
learner_device_ids
)
==
0
),
"local_num_envs must be divisible by len(learner_device_ids)"
assert
(
int
(
args
.
local_num_envs
/
len
(
args
.
learner_device_ids
))
*
args
.
num_actor_threads
%
args
.
num_minibatches
==
0
),
"int(local_num_envs / len(learner_device_ids)) must be divisible by num_minibatches"
args
.
world_size
=
1
args
.
num_envs
=
args
.
local_num_envs
*
args
.
world_size
*
args
.
num_actor_threads
*
len
(
args
.
actor_device_ids
)
args
.
batch_size
=
args
.
local_batch_size
*
args
.
world_size
args
.
minibatch_size
=
args
.
local_minibatch_size
*
args
.
world_size
args
.
num_iterations
=
args
.
total_timesteps
//
args
.
batch_size
args
.
env_threads
=
args
.
local_env_threads
*
args
.
num_actor_threads
*
len
(
args
.
actor_device_ids
)
args
.
local_torch_threads
=
args
.
local_torch_threads
or
int
(
os
.
getenv
(
"OMP_NUM_THREADS"
,
"2"
))
timestamp
=
int
(
time
.
time
())
run_name
=
f
"{args.env_id}__{args.exp_name}__{args.seed}__{timestamp}"
ckpt_dir
=
os
.
path
.
join
(
args
.
ckpt_dir
,
run_name
)
os
.
makedirs
(
ckpt_dir
,
exist_ok
=
True
)
rollout_queues
=
[]
param_queues
=
[]
actor_processes
=
[]
learner_processes
=
[]
num_actors
=
len
(
args
.
actor_device_ids
)
*
args
.
num_actor_threads
num_learners
=
len
(
args
.
learner_device_ids
)
assert
num_learners
%
num_actors
==
0
,
"num_learners must be divisible by num_actors"
group_size
=
num_learners
//
num_actors
for
i
,
device_id
in
enumerate
(
args
.
actor_device_ids
):
for
j
in
range
(
args
.
num_actor_threads
):
a_rank
=
i
*
args
.
num_actor_threads
+
j
param_queues
.
append
(
mp
.
Queue
(
maxsize
=
1
))
rollout_queues_
=
[
mp
.
Queue
(
maxsize
=
1
)
for
_
in
range
(
group_size
)]
rollout_queues
.
extend
(
rollout_queues_
)
p
=
mp
.
Process
(
target
=
actor
,
args
=
(
args
,
a_rank
,
rollout_queues_
,
param_queues
[
-
1
],
run_name
,
device_id
),
)
actor_processes
.
append
(
p
)
p
.
start
()
for
i
,
device_id
in
enumerate
(
args
.
learner_device_ids
):
param_queue
=
param_queues
[
i
//
group_size
]
rollout_queue
=
rollout_queues
[
i
]
p
=
mp
.
Process
(
target
=
learner
,
args
=
(
args
,
i
,
rollout_queue
,
param_queue
,
run_name
,
ckpt_dir
,
device_id
),
)
learner_processes
.
append
(
p
)
p
.
start
()
for
p
in
actor_processes
+
learner_processes
:
p
.
join
()
\ No newline at end of file
scripts/ppo_osfp.py
View file @
1487b081
...
...
@@ -69,7 +69,7 @@ class Args:
"""the number of parallel game environments"""
num_steps
:
int
=
128
"""the number of steps to run in each environment per policy rollout"""
anneal_lr
:
bool
=
Tru
e
anneal_lr
:
bool
=
Fals
e
"""Toggle learning rate annealing for policy and value networks"""
gamma
:
float
=
1.0
"""the discount factor gamma"""
...
...
@@ -329,21 +329,17 @@ def main():
global_step
=
0
warmup_steps
=
0
start_time
=
time
.
time
()
next_obs
,
info
=
envs
.
reset
()
next_obs
=
to_tensor
(
next_obs
,
device
,
dtype
=
torch
.
uint8
)
next_to_play_
=
info
[
"to_play"
]
next_to_play
=
to_tensor
(
next_to_play_
,
device
)
next_done
=
torch
.
zeros
(
args
.
local_num_envs
,
device
=
device
,
dtype
=
torch
.
bool
)
ai_player1_
=
np
.
concatenate
([
np
.
zeros
(
args
.
local_num_envs
//
2
,
dtype
=
np
.
int64
),
np
.
ones
(
args
.
local_num_envs
//
2
,
dtype
=
np
.
int64
)
])
np
.
random
.
shuffle
(
ai_player1_
)
ai_player1
=
to_tensor
(
ai_player1_
,
device
,
dtype
=
next_to_play
.
dtype
)
ai_player1
=
to_tensor
(
ai_player1_
,
device
)
next_value1
=
next_value2
=
0
step
=
0
ts
=
[]
lp_count
=
0
ts
=
sample_target
(
history
)
for
iteration
in
range
(
args
.
num_iterations
):
# Annealing the rate if instructed to do so.
...
...
@@ -351,6 +347,15 @@ def main():
frac
=
1.0
-
(
iteration
%
args
.
iter_per_lp
)
/
args
.
iter_per_lp
lrnow
=
frac
*
args
.
learning_rate
optimizer
.
param_groups
[
0
][
"lr"
]
=
lrnow
if
iteration
%
args
.
iter_per_lp
==
0
:
next_obs
,
info
=
envs
.
reset
()
next_obs
=
to_tensor
(
next_obs
,
device
,
dtype
=
torch
.
uint8
)
next_to_play_
=
info
[
"to_play"
]
next_to_play
=
to_tensor
(
next_to_play_
,
device
)
next_value1
=
next_value2
=
0
step
=
0
ts
=
[]
if
len
(
ts
)
==
0
:
ts
=
sample_target
(
history
)
...
...
@@ -538,7 +543,7 @@ def main():
if
(
iteration
+
1
)
%
args
.
iter_per_lp
==
0
:
lp_count
+=
1
win_rates
=
sync_var
(
avg_win_rates
,
dtype
=
torch
.
float32
,
reduce
=
'mean'
)
if
np
.
all
(
win_rates
>
args
.
update_win_rate
)
or
lp_count
>=
args
.
max_lp
:
if
len
(
history
)
==
0
or
np
.
all
(
win_rates
>
args
.
update_win_rate
)
or
lp_count
>=
args
.
max_lp
:
agent_t
.
load_state_dict
(
agent
.
state_dict
())
with
torch
.
no_grad
():
traced_model_t
=
torch
.
jit
.
trace
(
agent_t
,
(
example_obs
,),
check_tolerance
=
False
,
check_trace
=
False
)
...
...
ygoai/rl/agent.py
View file @
1487b081
...
...
@@ -343,7 +343,8 @@ class Encoder(nn.Module):
mask
=
x_actions
[:,
:,
2
]
==
0
# msg == 0
valid
=
x
[
'global_'
][:,
-
1
]
==
0
mask
[:,
0
]
&=
valid
mask
[:,
0
]
=
False
# mask[:, 0] &= valid
for
layer
in
self
.
action_card_net
:
f_actions
=
layer
(
f_actions
,
f_cards
[:,
1
:],
tgt_key_padding_mask
=
mask
,
memory_key_padding_mask
=
c_mask
)
...
...
ygoai/rl/ppo.py
View file @
1487b081
...
...
@@ -54,6 +54,20 @@ def train_step(agent, optimizer, scaler, mb_obs, mb_actions, mb_logprobs, mb_adv
return
old_approx_kl
,
approx_kl
,
clipfrac
,
pg_loss
,
v_loss
,
entropy_loss
def
bootstrap_value
(
values
,
rewards
,
dones
,
nextvalues
,
next_done
,
gamma
,
gae_lambda
):
num_steps
=
rewards
.
size
(
0
)
advantages
=
torch
.
zeros_like
(
rewards
)
lastgaelam
=
0
for
t
in
reversed
(
range
(
num_steps
)):
if
t
==
num_steps
-
1
:
nextnonterminal
=
1.0
-
next_done
nextvalues
=
nextvalues
else
:
nextnonterminal
=
1.0
-
dones
[
t
+
1
]
nextvalues
=
values
[
t
+
1
]
delta
=
rewards
[
t
]
+
gamma
*
nextvalues
*
nextnonterminal
-
values
[
t
]
advantages
[
t
]
=
lastgaelam
=
delta
+
gamma
*
gae_lambda
*
nextnonterminal
*
lastgaelam
def
bootstrap_value_self
(
values
,
rewards
,
dones
,
learns
,
nextvalues
,
next_done
,
gamma
,
gae_lambda
):
num_steps
=
rewards
.
size
(
0
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment