Commit 0e9969c5 authored by sbl1996@126.com's avatar sbl1996@126.com

Unify PPO and Impala to Cleanba

parent 907b51bc
import os
import shutil
import queue
import random
import threading
import time
from datetime import datetime, timedelta, timezone
from collections import deque
from dataclasses import dataclass, field
from types import SimpleNamespace
from typing import List, NamedTuple, Optional
from functools import partial
import ygoenv
import flax
import jax
import jax.numpy as jnp
import numpy as np
import optax
import distrax
import tyro
from flax.training.train_state import TrainState
from rich.pretty import pprint
from tensorboardX import SummaryWriter
from ygoai.utils import init_ygopro, load_embeddings
from ygoai.rl.ckpt import ModelCheckpoint, sync_to_gcs, zip_files
from ygoai.rl.jax.agent2 import PPOLSTMAgent
from ygoai.rl.jax.utils import RecordEpisodeStatistics, masked_normalize, categorical_sample
from ygoai.rl.jax.eval import evaluate, battle
from ygoai.rl.jax import clipped_surrogate_pg_loss, vtrace_2p0s, mse_loss, entropy_loss, simple_policy_loss, ach_loss, policy_gradient_loss
from ygoai.rl.jax.switch import truncated_gae_2p0s as gae_2p0s_switch
os.environ["XLA_FLAGS"] = "--xla_cpu_multi_thread_eigen=false intra_op_parallelism_threads=1"
@dataclass
class Args:
exp_name: str = os.path.basename(__file__).rstrip(".py")
"""the name of this experiment"""
seed: int = 1
"""seed of the experiment"""
log_frequency: int = 10
"""the logging frequency of the model performance (in terms of `updates`)"""
save_interval: int = 400
"""the frequency of saving the model (in terms of `updates`)"""
checkpoint: Optional[str] = None
"""the path to the model checkpoint to load"""
debug: bool = False
"""whether to run the script in debug mode"""
tb_dir: str = "runs"
"""the directory to save the tensorboard logs"""
ckpt_dir: str = "checkpoints"
"""the directory to save the model checkpoints"""
gcs_bucket: Optional[str] = None
"""the GCS bucket to save the model checkpoints"""
# Algorithm specific arguments
env_id: str = "YGOPro-v0"
"""the id of the environment"""
deck: str = "../assets/deck"
"""the deck file to use"""
deck1: Optional[str] = None
"""the deck file for the first player"""
deck2: Optional[str] = None
"""the deck file for the second player"""
code_list_file: str = "code_list.txt"
"""the code list file for card embeddings"""
embedding_file: Optional[str] = None
"""the embedding file for card embeddings"""
max_options: int = 24
"""the maximum number of options"""
n_history_actions: int = 32
"""the number of history actions to use"""
greedy_reward: bool = False
"""whether to use greedy reward (faster kill higher reward)"""
total_timesteps: int = 50000000000
"""total timesteps of the experiments"""
learning_rate: float = 3e-4
"""the learning rate of the optimizer"""
local_num_envs: int = 128
"""the number of parallel game environments"""
local_env_threads: Optional[int] = None
"""the number of threads to use for environment"""
num_actor_threads: int = 2
"""the number of actor threads to use"""
num_steps: int = 128
"""the number of steps to run in each environment per policy rollout"""
anneal_lr: bool = False
"""Toggle learning rate annealing for policy and value networks"""
gamma: float = 1.0
"""the discount factor gamma"""
num_minibatches: int = 64
"""the number of mini-batches"""
update_epochs: int = 2
"""the K epochs to update the policy"""
switch: bool = False
"""Toggle the use of switch mechanism"""
norm_adv: bool = False
"""Toggles advantages normalization"""
upgo: bool = True
"""Toggle the use of UPGO for advantages"""
gae_lambda: float = 0.95
"""the lambda for the general advantage estimation"""
c_clip_min: float = 0.001
"""the minimum value of the importance sampling clipping"""
c_clip_max: float = 1.007
"""the maximum value of the importance sampling clipping"""
rho_clip_min: float = 0.001
"""the minimum value of the importance sampling clipping"""
rho_clip_max: float = 1.007
"""the maximum value of the importance sampling clipping"""
ppo_clip: bool = True
"""whether to use the PPO clipping to replace V-Trace surrogate clipping"""
clip_coef: float = 0.25
"""the PPO surrogate clipping coefficient"""
dual_clip_coef: Optional[float] = 3.0
"""the dual surrogate clipping coefficient, typically 3.0"""
spo_kld_max: Optional[float] = None
"""the maximum KLD for the SPO policy, typically 0.02"""
logits_threshold: Optional[float] = None
"""the logits threshold for NeuRD and ACH, typically 2.0-6.0"""
ent_coef: float = 0.01
"""coefficient of the entropy"""
vf_coef: float = 1.0
"""coefficient of the value function"""
max_grad_norm: float = 1.0
"""the maximum norm for the gradient clipping"""
num_layers: int = 2
"""the number of layers for the agent"""
num_channels: int = 128
"""the number of channels for the agent"""
rnn_channels: int = 512
"""the number of channels for the RNN in the agent"""
actor_device_ids: List[int] = field(default_factory=lambda: [0, 1])
"""the device ids that actor workers will use"""
learner_device_ids: List[int] = field(default_factory=lambda: [2, 3])
"""the device ids that learner workers will use"""
distributed: bool = False
"""whether to use `jax.distirbuted`"""
concurrency: bool = True
"""whether to run the actor and learner concurrently"""
bfloat16: bool = False
"""whether to use bfloat16 for the agent"""
thread_affinity: bool = False
"""whether to use thread affinity for the environment"""
eval_checkpoint: Optional[str] = None
"""the path to the model checkpoint to evaluate"""
local_eval_episodes: int = 128
"""the number of episodes to evaluate the model"""
eval_interval: int = 100
"""the number of iterations to evaluate the model"""
# runtime arguments to be filled in
local_batch_size: int = 0
local_minibatch_size: int = 0
world_size: int = 0
local_rank: int = 0
num_envs: int = 0
batch_size: int = 0
minibatch_size: int = 0
num_updates: int = 0
global_learner_decices: Optional[List[str]] = None
actor_devices: Optional[List[str]] = None
learner_devices: Optional[List[str]] = None
num_embeddings: Optional[int] = None
freeze_id: Optional[bool] = None
def make_env(args, seed, num_envs, num_threads, mode='self', thread_affinity_offset=-1, eval=False):
if not args.thread_affinity:
thread_affinity_offset = -1
if thread_affinity_offset >= 0:
print("Binding to thread offset", thread_affinity_offset)
envs = ygoenv.make(
task_id=args.env_id,
env_type="gymnasium",
num_envs=num_envs,
num_threads=num_threads,
thread_affinity_offset=thread_affinity_offset,
seed=seed,
deck1=args.deck1,
deck2=args.deck2,
max_options=args.max_options,
n_history_actions=args.n_history_actions,
async_reset=False,
greedy_reward=args.greedy_reward if not eval else True,
play_mode=mode,
)
envs.num_envs = num_envs
return envs
class Transition(NamedTuple):
obs: list
dones: list
actions: list
logits: list
rewards: list
mains: list
next_dones: list
def create_agent(args, multi_step=False):
return PPOLSTMAgent(
channels=args.num_channels,
num_layers=args.num_layers,
embedding_shape=args.num_embeddings,
dtype=jnp.bfloat16 if args.bfloat16 else jnp.float32,
param_dtype=jnp.float32,
lstm_channels=args.rnn_channels,
switch=args.switch,
multi_step=multi_step,
freeze_id=args.freeze_id,
)
def init_rnn_state(num_envs, rnn_channels):
return (
np.zeros((num_envs, rnn_channels)),
np.zeros((num_envs, rnn_channels)),
)
def rollout(
key: jax.random.PRNGKey,
args: Args,
rollout_queue,
params_queue,
writer,
learner_devices,
device_thread_id,
):
eval_mode = 'self' if args.eval_checkpoint else 'bot'
if eval_mode != 'bot':
eval_params = params_queue.get()
local_seed = args.seed + device_thread_id
np.random.seed(local_seed)
envs = make_env(
args,
local_seed,
args.local_num_envs,
args.local_env_threads,
thread_affinity_offset=device_thread_id * args.local_env_threads,
)
envs = RecordEpisodeStatistics(envs)
eval_envs = make_env(
args,
local_seed,
args.local_eval_episodes,
args.local_eval_episodes // 4, mode=eval_mode, eval=True)
eval_envs = RecordEpisodeStatistics(eval_envs)
len_actor_device_ids = len(args.actor_device_ids)
n_actors = args.num_actor_threads * len_actor_device_ids
global_step = 0
start_time = time.time()
warmup_step = 0
other_time = 0
avg_ep_returns = deque(maxlen=1000)
avg_win_rates = deque(maxlen=1000)
@jax.jit
def get_logits(
params: flax.core.FrozenDict, inputs):
rstate, logits = create_agent(args).apply(params, inputs)[:2]
return rstate, logits
@jax.jit
def get_action(
params: flax.core.FrozenDict, inputs):
rstate, logits = get_logits(params, inputs)
return rstate, logits.argmax(axis=1)
@jax.jit
def get_action_battle(params1, params2, rstate1, rstate2, obs, main, done):
next_rstate1, logits1 = get_logits(params1, (rstate1, obs))
next_rstate2, logits2 = get_logits(params2, (rstate2, obs))
logits = jnp.where(main[:, None], logits1, logits2)
rstate1 = jax.tree.map(
lambda x1, x2: jnp.where(main[:, None], x1, x2), next_rstate1, rstate1)
rstate2 = jax.tree.map(
lambda x1, x2: jnp.where(main[:, None], x2, x1), next_rstate2, rstate2)
rstate1, rstate2 = jax.tree.map(
lambda x: jnp.where(done[:, None], 0, x), (rstate1, rstate2))
return rstate1, rstate2, logits.argmax(axis=1)
@jax.jit
def sample_action(
params: flax.core.FrozenDict,
next_obs, rstate1, rstate2, main, done, key):
next_obs = jax.tree.map(lambda x: jnp.array(x), next_obs)
done = jnp.array(done)
main = jnp.array(main)
rstate = jax.tree.map(
lambda x1, x2: jnp.where(main[:, None], x1, x2), rstate1, rstate2)
rstate, logits = get_logits(params, (rstate, next_obs))
rstate1 = jax.tree.map(lambda x, y: jnp.where(main[:, None], x, y), rstate, rstate1)
rstate2 = jax.tree.map(lambda x, y: jnp.where(main[:, None], y, x), rstate, rstate2)
rstate1, rstate2 = jax.tree.map(
lambda x: jnp.where(done[:, None], 0, x), (rstate1, rstate2))
action, key = categorical_sample(logits, key)
return next_obs, done, main, rstate1, rstate2, action, logits, key
# put data in the last index
params_queue_get_time = deque(maxlen=10)
rollout_time = deque(maxlen=10)
actor_policy_version = 0
next_obs, info = envs.reset()
next_to_play = info["to_play"]
next_done = np.zeros(args.local_num_envs, dtype=np.bool_)
next_rstate1 = next_rstate2 = init_rnn_state(
args.local_num_envs, args.rnn_channels)
eval_rstate = init_rnn_state(
args.local_eval_episodes, args.rnn_channels)
main_player = np.concatenate([
np.zeros(args.local_num_envs // 2, dtype=np.int64),
np.ones(args.local_num_envs // 2, dtype=np.int64)
])
np.random.shuffle(main_player)
storage = []
@jax.jit
def prepare_data(storage: List[Transition]) -> Transition:
return jax.tree.map(lambda *xs: jnp.split(jnp.stack(xs), len(learner_devices), axis=1), *storage)
for update in range(1, args.num_updates + 2):
if update == 10:
start_time = time.time()
warmup_step = global_step
update_time_start = time.time()
inference_time = 0
env_time = 0
params_queue_get_time_start = time.time()
if args.concurrency:
if update != 2:
params = params_queue.get()
# params["params"]["Encoder_0"]['Embed_0'][
# "embedding"
# ].block_until_ready()
actor_policy_version += 1
else:
params = params_queue.get()
actor_policy_version += 1
params_queue_get_time.append(time.time() - params_queue_get_time_start)
rollout_time_start = time.time()
init_rstate1, init_rstate2 = jax.tree.map(
lambda x: x.copy(), (next_rstate1, next_rstate2))
for _ in range(args.num_steps):
global_step += args.local_num_envs * n_actors * args.world_size
cached_next_obs = next_obs
cached_next_done = next_done
main = next_to_play == main_player
inference_time_start = time.time()
cached_next_obs, cached_next_done, cached_main, \
next_rstate1, next_rstate2, action, logits, key = sample_action(
params, cached_next_obs, next_rstate1, next_rstate2, main, cached_next_done, key)
cpu_action = np.array(action)
inference_time += time.time() - inference_time_start
_start = time.time()
next_obs, next_reward, next_done, info = envs.step(cpu_action)
next_to_play = info["to_play"]
env_time += time.time() - _start
storage.append(
Transition(
obs=cached_next_obs,
dones=cached_next_done,
mains=cached_main,
actions=action,
logits=logits,
rewards=next_reward,
next_dones=next_done,
)
)
for idx, d in enumerate(next_done):
if not d:
continue
cur_main = main[idx]
if args.switch:
for j in reversed(range(len(storage) - 1)):
t = storage[j]
if t.next_dones[idx]:
# For OTK where player may not switch
break
if t.mains[idx] != cur_main:
t.next_dones[idx] = True
t.rewards[idx] = -next_reward[idx]
break
episode_reward = info['r'][idx] * (1 if cur_main else -1)
win = 1 if episode_reward > 0 else 0
avg_ep_returns.append(episode_reward)
avg_win_rates.append(win)
rollout_time.append(time.time() - rollout_time_start)
partitioned_storage = prepare_data(storage)
storage = []
sharded_storage = []
for x in partitioned_storage:
if isinstance(x, dict):
x = {
k: jax.device_put_sharded(v, devices=learner_devices)
for k, v in x.items()
}
else:
x = jax.device_put_sharded(x, devices=learner_devices)
sharded_storage.append(x)
sharded_storage = Transition(*sharded_storage)
next_main = main_player == next_to_play
next_rstate = jax.tree.map(
lambda x1, x2: jnp.where(next_main[:, None], x1, x2), next_rstate1, next_rstate2)
sharded_data = jax.tree.map(lambda x: jax.device_put_sharded(
np.split(x, len(learner_devices)), devices=learner_devices),
(init_rstate1, init_rstate2, (next_rstate, next_obs), next_main))
if args.eval_interval and update % args.eval_interval == 0:
_start = time.time()
if eval_mode == 'bot':
predict_fn = lambda x: get_action(params, x)
eval_return, eval_ep_len, eval_win_rate = evaluate(
eval_envs, args.local_eval_episodes, predict_fn, eval_rstate)
else:
predict_fn = lambda *x: get_action_battle(params, eval_params, *x)
eval_return, eval_ep_len, eval_win_rate = battle(
eval_envs, args.local_eval_episodes, predict_fn, eval_rstate)
eval_time = time.time() - _start
other_time += eval_time
eval_stats = np.array([eval_time, eval_return, eval_win_rate], dtype=np.float32)
else:
eval_stats = None
learn_opponent = False
payload = (
global_step,
update,
sharded_storage,
*sharded_data,
np.mean(params_queue_get_time),
learn_opponent,
eval_stats,
)
rollout_queue.put(payload)
if update % args.log_frequency == 0:
avg_episodic_return = np.mean(avg_ep_returns)
avg_episodic_length = np.mean(envs.returned_episode_lengths)
SPS = int((global_step - warmup_step) / (time.time() - start_time - other_time))
SPS_update = int(args.batch_size / (time.time() - update_time_start))
if device_thread_id == 0:
print(
f"global_step={global_step}, avg_return={avg_episodic_return:.4f}, avg_length={avg_episodic_length:.0f}"
)
time_now = datetime.now(timezone(timedelta(hours=8))).strftime("%H:%M:%S")
print(
f"{time_now} SPS: {SPS}, update: {SPS_update}, "
f"rollout_time={rollout_time[-1]:.2f}, params_time={params_queue_get_time[-1]:.2f}"
)
writer.add_scalar("stats/rollout_time", np.mean(rollout_time), global_step)
writer.add_scalar("charts/avg_episodic_return", avg_episodic_return, global_step)
writer.add_scalar("charts/avg_episodic_length", avg_episodic_length, global_step)
writer.add_scalar("stats/params_queue_get_time", np.mean(params_queue_get_time), global_step)
writer.add_scalar("stats/inference_time", inference_time, global_step)
writer.add_scalar("stats/env_time", env_time, global_step)
writer.add_scalar("charts/SPS", SPS, global_step)
writer.add_scalar("charts/SPS_update", SPS_update, global_step)
if __name__ == "__main__":
args = tyro.cli(Args)
args.local_batch_size = int(args.local_num_envs * args.num_steps * args.num_actor_threads * len(args.actor_device_ids))
args.local_minibatch_size = int(args.local_batch_size // args.num_minibatches)
assert (
args.local_num_envs % len(args.learner_device_ids) == 0
), "local_num_envs must be divisible by len(learner_device_ids)"
assert (
int(args.local_num_envs / len(args.learner_device_ids)) * args.num_actor_threads % args.num_minibatches == 0
), "int(local_num_envs / len(learner_device_ids)) must be divisible by num_minibatches"
if args.distributed:
jax.distributed.initialize(
local_device_ids=range(len(args.learner_device_ids) + len(args.actor_device_ids)),
)
print(list(range(len(args.learner_device_ids) + len(args.actor_device_ids))))
from jax.experimental.compilation_cache import compilation_cache as cc
cc.set_cache_dir(os.path.expanduser("~/.cache/jax"))
args.world_size = jax.process_count()
args.local_rank = jax.process_index()
args.num_envs = args.local_num_envs * args.world_size * args.num_actor_threads * len(args.actor_device_ids)
args.batch_size = args.local_batch_size * args.world_size
args.minibatch_size = args.local_minibatch_size * args.world_size
args.num_updates = args.total_timesteps // (args.local_batch_size * args.world_size)
args.local_env_threads = args.local_env_threads or args.local_num_envs
if args.embedding_file:
embeddings = load_embeddings(args.embedding_file, args.code_list_file)
embedding_shape = embeddings.shape
args.num_embeddings = embedding_shape
args.freeze_id = True if args.freeze_id is None else args.freeze_id
else:
embeddings = None
embedding_shape = None
local_devices = jax.local_devices()
global_devices = jax.devices()
learner_devices = [local_devices[d_id] for d_id in args.learner_device_ids]
actor_devices = [local_devices[d_id] for d_id in args.actor_device_ids]
global_learner_decices = [
global_devices[d_id + process_index * len(local_devices)]
for process_index in range(args.world_size)
for d_id in args.learner_device_ids
]
global_main_devices = [
global_devices[process_index * len(local_devices)]
for process_index in range(args.world_size)
]
print("global_learner_decices", global_learner_decices)
args.global_learner_decices = [str(item) for item in global_learner_decices]
args.actor_devices = [str(item) for item in actor_devices]
args.learner_devices = [str(item) for item in learner_devices]
pprint(args)
timestamp = int(time.time())
run_name = f"{args.env_id}__{args.exp_name}__{args.seed}__{timestamp}"
dummy_writer = SimpleNamespace()
dummy_writer.add_scalar = lambda x, y, z: None
tb_log_dir = f"{args.tb_dir}/{run_name}"
if args.local_rank == 0 and not args.debug:
writer = SummaryWriter(tb_log_dir)
writer.add_text(
"hyperparameters",
"|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])),
)
else:
writer = dummy_writer
def save_fn(obj, path):
with open(path, "wb") as f:
f.write(flax.serialization.to_bytes(obj))
ckpt_maneger = ModelCheckpoint(
args.ckpt_dir, save_fn, n_saved=2)
# seeding
seed_offset = args.local_rank * 10000
args.seed += seed_offset
random.seed(args.seed)
init_key = jax.random.PRNGKey(args.seed - seed_offset)
key = jax.random.PRNGKey(args.seed)
key, *learner_keys = jax.random.split(key, len(learner_devices) + 1)
learner_keys = jax.device_put_sharded(learner_keys, devices=learner_devices)
actor_keys = jax.random.split(key, len(actor_devices) * args.num_actor_threads)
deck = init_ygopro(args.env_id, "english", args.deck, args.code_list_file)
args.deck1 = args.deck1 or deck
args.deck2 = args.deck2 or deck
# env setup
envs = make_env(args, args.seed, 8, 1)
obs_space = envs.observation_space
action_shape = envs.action_space.shape
print(f"obs_space={obs_space}, action_shape={action_shape}")
sample_obs = jax.tree.map(lambda x: jnp.array([x]), obs_space.sample())
envs.close()
del envs
def linear_schedule(count):
# anneal learning rate linearly after one training iteration which contains
# (args.num_minibatches) gradient updates
frac = 1.0 - (count // (args.num_minibatches * args.update_epochs)) / args.num_updates
return args.learning_rate * frac
rstate = init_rnn_state(1, args.rnn_channels)
agent = create_agent(args)
params = agent.init(init_key, (rstate, sample_obs))
if embeddings is not None:
unknown_embed = embeddings.mean(axis=0)
embeddings = np.concatenate([unknown_embed[None, :], embeddings], axis=0)
params = flax.core.unfreeze(params)
params['params']['Encoder_0']['Embed_0']['embedding'] = jax.device_put(embeddings)
params = flax.core.freeze(params)
tx = optax.MultiSteps(
optax.chain(
optax.clip_by_global_norm(args.max_grad_norm),
optax.inject_hyperparams(optax.adam)(
learning_rate=linear_schedule if args.anneal_lr else args.learning_rate, eps=1e-5
),
),
every_k_schedule=1,
)
tx = optax.apply_if_finite(tx, max_consecutive_errors=10)
agent_state = TrainState.create(
apply_fn=None,
params=params,
tx=tx,
)
if args.checkpoint:
with open(args.checkpoint, "rb") as f:
params = flax.serialization.from_bytes(params, f.read())
agent_state = agent_state.replace(params=params)
print(f"loaded checkpoint from {args.checkpoint}")
agent_state = flax.jax_utils.replicate(agent_state, devices=learner_devices)
# print(agent.tabulate(agent_key, sample_obs))
if args.eval_checkpoint:
with open(args.eval_checkpoint, "rb") as f:
eval_params = flax.serialization.from_bytes(params, f.read())
print(f"loaded eval checkpoint from {args.eval_checkpoint}")
else:
eval_params = None
@jax.jit
def get_logits_and_value(
params: flax.core.FrozenDict, inputs,
):
rstate, logits, value, valid = create_agent(
args, multi_step=True).apply(params, inputs)
return logits, value.squeeze(-1)
def loss_fn(
params, rstate1, rstate2, obs, dones, next_dones,
switch_or_mains, actions, logits, rewards, mask, next_value):
# (num_steps * local_num_envs // n_mb))
num_envs = next_value.shape[0]
num_steps = dones.shape[0] // num_envs
def reshape_time_series(x):
return jnp.reshape(x, (num_steps, num_envs) + x.shape[1:])
mask = mask * (1.0 - dones)
n_valids = jnp.sum(mask)
if args.switch:
dones = dones | next_dones
inputs = (rstate1, rstate2, obs, dones, switch_or_mains)
new_logits, new_values = get_logits_and_value(params, inputs)
ratios = distrax.importance_sampling_ratios(distrax.Categorical(
new_logits), distrax.Categorical(logits), actions)
logratio = jnp.log(ratios)
approx_kl = (((ratios - 1) - logratio) * mask).sum() / n_valids
new_values_, rewards, next_dones, switch_or_mains = jax.tree.map(
reshape_time_series, (new_values, rewards, next_dones, switch_or_mains),
)
# Advantages and target values
if args.switch:
target_values, advantages = gae_2p0s_switch(
next_value, new_values_, rewards, next_dones, switch_or_mains,
args.gamma, args.gae_lambda, args.upgo)
else:
# TODO: TD(lambda) for multi-step
ratios_ = reshape_time_series(ratios)
target_values, advantages = vtrace_2p0s(
next_value, ratios_, new_values_, rewards, next_dones, switch_or_mains, args.gamma,
args.rho_clip_min, args.rho_clip_max, args.c_clip_min, args.c_clip_max)
target_values, advantages = jax.tree.map(
lambda x: jnp.reshape(x, (-1,)), (target_values, advantages))
if args.norm_adv:
advantages = masked_normalize(advantages, mask, eps=1e-8)
# Policy loss
if args.spo_kld_max is not None:
pg_loss = simple_policy_loss(
ratios, logits, new_logits, advantages, args.spo_kld_max)
elif args.logits_threshold is not None:
pg_loss = ach_loss(
actions, logits, new_logits, advantages, args.logits_threshold, args.clip_coef, args.dual_clip_coef)
elif args.ppo_clip:
pg_loss = clipped_surrogate_pg_loss(
ratios, advantages, args.clip_coef, args.dual_clip_coef)
else:
pg_advs = jnp.clip(ratios, args.rho_clip_min, args.rho_clip_max) * advantages
pg_loss = policy_gradient_loss(new_logits, actions, pg_advs)
pg_loss = jnp.sum(pg_loss * mask)
v_loss = mse_loss(new_values, target_values)
v_loss = jnp.sum(v_loss * mask)
ent_loss = entropy_loss(new_logits)
ent_loss = jnp.sum(ent_loss * mask)
pg_loss = pg_loss / n_valids
v_loss = v_loss / n_valids
ent_loss = ent_loss / n_valids
loss = pg_loss - args.ent_coef * ent_loss + v_loss * args.vf_coef
return loss, (pg_loss, v_loss, ent_loss, jax.lax.stop_gradient(approx_kl))
def single_device_update(
agent_state: TrainState,
sharded_storages: List,
sharded_init_rstate1: List,
sharded_init_rstate2: List,
sharded_next_inputs: List,
sharded_next_main: List,
key: jax.random.PRNGKey,
learn_opponent: bool = False,
):
storage = jax.tree.map(lambda *x: jnp.hstack(x), *sharded_storages)
# TODO: rstate will be out-date after the first update, maybe consider R2D2
next_inputs, init_rstate1, init_rstate2 = [
jax.tree.map(lambda *x: jnp.concatenate(x), *x)
for x in [sharded_next_inputs, sharded_init_rstate1, sharded_init_rstate2]
]
next_main = jnp.concatenate(sharded_next_main)
# reorder storage of individual players
# main first, opponent second
num_steps, num_envs = storage.rewards.shape
if args.switch:
T = jnp.arange(num_steps, dtype=jnp.int32)
B = jnp.arange(num_envs, dtype=jnp.int32)
mains = storage.mains.astype(jnp.int32)
indices = jnp.argsort(T[:, None] - mains * num_steps, axis=0)
switch_steps = jnp.sum(mains, axis=0)
switch = T[:, None] == (switch_steps[None, :] - 1)
storage = jax.tree.map(lambda x: x[indices, B[None, :]], storage)
loss_grad_fn = jax.value_and_grad(loss_fn, has_aux=True)
def update_epoch(carry, _):
agent_state, key = carry
key, subkey = jax.random.split(key)
next_value = create_agent(args).apply(
agent_state.params, next_inputs)[2].squeeze(-1)
if args.switch:
next_value = jnp.where(next_main, -next_value, next_value)
else:
next_value = jnp.where(next_main, next_value, -next_value)
def convert_data(x: jnp.ndarray, num_steps):
if args.update_epochs > 1:
x = jax.random.permutation(subkey, x, axis=1 if num_steps > 1 else 0)
N = args.num_minibatches
if num_steps > 1:
x = jnp.reshape(x, (num_steps, N, -1) + x.shape[2:])
x = x.transpose(1, 0, *range(2, x.ndim))
x = x.reshape(N, -1, *x.shape[3:])
else:
x = jnp.reshape(x, (N, -1) + x.shape[1:])
return x
shuffled_init_rstate1, shuffled_init_rstate2, \
shuffled_next_value = jax.tree.map(
partial(convert_data, num_steps=1), (init_rstate1, init_rstate2, next_value))
shuffled_storage = jax.tree.map(
partial(convert_data, num_steps=num_steps), storage)
if args.switch:
switch_or_mains = convert_data(switch, num_steps)
else:
switch_or_mains = shuffled_storage.mains
shuffled_mask = jnp.ones_like(shuffled_storage.mains)
def update_minibatch(agent_state, minibatch):
(loss, (pg_loss, v_loss, entropy_loss, approx_kl)), grads = loss_grad_fn(
agent_state.params, *minibatch)
grads = jax.lax.pmean(grads, axis_name="local_devices")
agent_state = agent_state.apply_gradients(grads=grads)
return agent_state, (loss, pg_loss, v_loss, entropy_loss, approx_kl)
agent_state, (loss, pg_loss, v_loss, entropy_loss, approx_kl) = jax.lax.scan(
update_minibatch,
agent_state,
(
shuffled_init_rstate1,
shuffled_init_rstate2,
shuffled_storage.obs,
shuffled_storage.dones,
shuffled_storage.next_dones,
switch_or_mains,
shuffled_storage.actions,
shuffled_storage.logits,
shuffled_storage.rewards,
shuffled_mask,
shuffled_next_value,
),
)
return (agent_state, key), (loss, pg_loss, v_loss, entropy_loss, approx_kl)
(agent_state, key), (loss, pg_loss, v_loss, entropy_loss, approx_kl) = jax.lax.scan(
update_epoch, (agent_state, key), (), length=args.update_epochs
)
loss = jax.lax.pmean(loss, axis_name="local_devices").mean()
pg_loss = jax.lax.pmean(pg_loss, axis_name="local_devices").mean()
v_loss = jax.lax.pmean(v_loss, axis_name="local_devices").mean()
entropy_loss = jax.lax.pmean(entropy_loss, axis_name="local_devices").mean()
approx_kl = jax.lax.pmean(approx_kl, axis_name="local_devices").mean()
return agent_state, loss, pg_loss, v_loss, entropy_loss, approx_kl, key
all_reduce_value = jax.pmap(
lambda x: jax.lax.pmean(x, axis_name="main_devices"),
axis_name="main_devices",
devices=global_main_devices,
)
multi_device_update = jax.pmap(
single_device_update,
axis_name="local_devices",
devices=global_learner_decices,
static_broadcasted_argnums=(7,),
)
params_queues = []
rollout_queues = []
unreplicated_params = flax.jax_utils.unreplicate(agent_state.params)
for d_idx, d_id in enumerate(args.actor_device_ids):
device_params = jax.device_put(unreplicated_params, local_devices[d_id])
for thread_id in range(args.num_actor_threads):
params_queues.append(queue.Queue(maxsize=1))
rollout_queues.append(queue.Queue(maxsize=1))
if eval_params:
params_queues[-1].put(
jax.device_put(eval_params, local_devices[d_id]))
actor_thread_id = d_idx * args.num_actor_threads + thread_id
threading.Thread(
target=rollout,
args=(
jax.device_put(actor_keys[actor_thread_id], local_devices[d_id]),
args,
rollout_queues[-1],
params_queues[-1],
writer if d_idx == 0 and thread_id == 0 else dummy_writer,
learner_devices,
actor_thread_id,
),
).start()
params_queues[-1].put(device_params)
rollout_queue_get_time = deque(maxlen=10)
data_transfer_time = deque(maxlen=10)
learner_policy_version = 0
while True:
learner_policy_version += 1
rollout_queue_get_time_start = time.time()
sharded_data_list = []
eval_stat_list = []
for d_idx, d_id in enumerate(args.actor_device_ids):
for thread_id in range(args.num_actor_threads):
(
global_step,
update,
*sharded_data,
avg_params_queue_get_time,
learn_opponent,
eval_stats,
) = rollout_queues[d_idx * args.num_actor_threads + thread_id].get()
sharded_data_list.append(sharded_data)
if eval_stats is not None:
eval_stat_list.append(eval_stats)
if update % args.eval_interval == 0:
eval_stats = np.mean(eval_stat_list, axis=0)
eval_stats = jax.device_put(eval_stats, local_devices[0])
eval_stats = np.array(all_reduce_value(eval_stats[None])[0])
eval_time, eval_return, eval_win_rate = eval_stats
writer.add_scalar(f"charts/eval_return", eval_return, global_step)
writer.add_scalar(f"charts/eval_win_rate", eval_win_rate, global_step)
print(f"eval_time={eval_time:.4f}, eval_return={eval_return:.4f}, eval_win_rate={eval_win_rate:.4f}")
rollout_queue_get_time.append(time.time() - rollout_queue_get_time_start)
training_time_start = time.time()
(agent_state, loss, pg_loss, v_loss, entropy_loss, approx_kl, learner_keys) = multi_device_update(
agent_state,
*list(zip(*sharded_data_list)),
learner_keys,
learn_opponent,
)
unreplicated_params = flax.jax_utils.unreplicate(agent_state.params)
for d_idx, d_id in enumerate(args.actor_device_ids):
device_params = jax.device_put(unreplicated_params, local_devices[d_id])
device_params["params"]["Encoder_0"]['Embed_0']["embedding"].block_until_ready()
for thread_id in range(args.num_actor_threads):
params_queues[d_idx * args.num_actor_threads + thread_id].put(device_params)
loss = loss[-1].item()
if np.isnan(loss) or np.isinf(loss):
raise ValueError(f"loss is {loss}")
# record rewards for plotting purposes
if learner_policy_version % args.log_frequency == 0:
writer.add_scalar("stats/rollout_queue_get_time", np.mean(rollout_queue_get_time), global_step)
writer.add_scalar(
"stats/rollout_params_queue_get_time_diff",
np.mean(rollout_queue_get_time) - avg_params_queue_get_time,
global_step,
)
writer.add_scalar("stats/training_time", time.time() - training_time_start, global_step)
writer.add_scalar("stats/rollout_queue_size", rollout_queues[-1].qsize(), global_step)
writer.add_scalar("stats/params_queue_size", params_queues[-1].qsize(), global_step)
print(
f"{global_step} actor_update={update}, "
f"train_time={time.time() - training_time_start:.2f}, "
f"data_time={rollout_queue_get_time[-1]:.2f}"
)
writer.add_scalar(
"charts/learning_rate", agent_state.opt_state[3][2][1].hyperparams["learning_rate"][-1].item(), global_step
)
writer.add_scalar("losses/value_loss", v_loss[-1].item(), global_step)
writer.add_scalar("losses/policy_loss", pg_loss[-1].item(), global_step)
writer.add_scalar("losses/entropy", entropy_loss[-1].item(), global_step)
writer.add_scalar("losses/approx_kl", approx_kl[-1].item(), global_step)
writer.add_scalar("losses/loss", loss, global_step)
if args.local_rank == 0 and learner_policy_version % args.save_interval == 0 and not args.debug:
M_steps = args.batch_size * learner_policy_version // 2**20
ckpt_name = f"{timestamp}_{M_steps}M.flax_model"
ckpt_maneger.save(unreplicated_params, ckpt_name)
if args.gcs_bucket is not None:
lastest_path = ckpt_maneger.get_latest()
copy_path = lastest_path.with_name("latest" + lastest_path.suffix)
shutil.copyfile(lastest_path, copy_path)
zip_file_path = "latest.zip"
zip_files(zip_file_path, [str(copy_path), tb_log_dir])
sync_to_gcs(args.gcs_bucket, zip_file_path)
if learner_policy_version >= args.num_updates:
break
if args.distributed:
jax.distributed.shutdown()
writer.close()
\ No newline at end of file
...@@ -73,12 +73,12 @@ class Args: ...@@ -73,12 +73,12 @@ class Args:
"""the maximum number of options""" """the maximum number of options"""
n_history_actions: int = 32 n_history_actions: int = 32
"""the number of history actions to use""" """the number of history actions to use"""
greedy_reward: bool = True greedy_reward: bool = False
"""whether to use greedy reward (faster kill higher reward)""" """whether to use greedy reward (faster kill higher reward)"""
total_timesteps: int = 5000000000 total_timesteps: int = 50000000000
"""total timesteps of the experiments""" """total timesteps of the experiments"""
learning_rate: float = 1e-3 learning_rate: float = 3e-4
"""the learning rate of the optimizer""" """the learning rate of the optimizer"""
local_num_envs: int = 128 local_num_envs: int = 128
"""the number of parallel game environments""" """the number of parallel game environments"""
...@@ -92,12 +92,12 @@ class Args: ...@@ -92,12 +92,12 @@ class Args:
"""Toggle learning rate annealing for policy and value networks""" """Toggle learning rate annealing for policy and value networks"""
gamma: float = 1.0 gamma: float = 1.0
"""the discount factor gamma""" """the discount factor gamma"""
upgo: bool = False num_minibatches: int = 64
"""Toggle the use of UPGO for advantages"""
num_minibatches: int = 8
"""the number of mini-batches""" """the number of mini-batches"""
update_epochs: int = 2 update_epochs: int = 2
"""the K epochs to update the policy""" """the K epochs to update the policy"""
upgo: bool = True
"""Toggle the use of UPGO for advantages"""
c_clip_min: float = 0.001 c_clip_min: float = 0.001
"""the minimum value of the importance sampling clipping""" """the minimum value of the importance sampling clipping"""
c_clip_max: float = 1.007 c_clip_max: float = 1.007
...@@ -141,9 +141,9 @@ class Args: ...@@ -141,9 +141,9 @@ class Args:
eval_checkpoint: Optional[str] = None eval_checkpoint: Optional[str] = None
"""the path to the model checkpoint to evaluate""" """the path to the model checkpoint to evaluate"""
local_eval_episodes: int = 32 local_eval_episodes: int = 128
"""the number of episodes to evaluate the model""" """the number of episodes to evaluate the model"""
eval_interval: int = 50 eval_interval: int = 100
"""the number of iterations to evaluate the model""" """the number of iterations to evaluate the model"""
# runtime arguments to be filled in # runtime arguments to be filled in
...@@ -193,6 +193,7 @@ class Transition(NamedTuple): ...@@ -193,6 +193,7 @@ class Transition(NamedTuple):
logits: list logits: list
rewards: list rewards: list
mains: list mains: list
next_dones: list
def create_agent(args, multi_step=False): def create_agent(args, multi_step=False):
...@@ -203,6 +204,7 @@ def create_agent(args, multi_step=False): ...@@ -203,6 +204,7 @@ def create_agent(args, multi_step=False):
dtype=jnp.bfloat16 if args.bfloat16 else jnp.float32, dtype=jnp.bfloat16 if args.bfloat16 else jnp.float32,
param_dtype=jnp.float32, param_dtype=jnp.float32,
lstm_channels=args.rnn_channels, lstm_channels=args.rnn_channels,
switch=False,
multi_step=multi_step, multi_step=multi_step,
freeze_id=args.freeze_id, freeze_id=args.freeze_id,
) )
...@@ -373,6 +375,7 @@ def rollout( ...@@ -373,6 +375,7 @@ def rollout(
actions=action, actions=action,
logits=logits, logits=logits,
rewards=next_reward, rewards=next_reward,
next_dones=next_done,
) )
) )
...@@ -405,7 +408,7 @@ def rollout( ...@@ -405,7 +408,7 @@ def rollout(
lambda x1, x2: jnp.where(next_main[:, None], x1, x2), next_rstate1, next_rstate2) lambda x1, x2: jnp.where(next_main[:, None], x1, x2), next_rstate1, next_rstate2)
sharded_data = jax.tree.map(lambda x: jax.device_put_sharded( sharded_data = jax.tree.map(lambda x: jax.device_put_sharded(
np.split(x, len(learner_devices)), devices=learner_devices), np.split(x, len(learner_devices)), devices=learner_devices),
(init_rstate1, init_rstate2, (next_rstate, next_obs), next_done, next_main)) (init_rstate1, init_rstate2, (next_rstate, next_obs), next_main))
if args.eval_interval and update % args.eval_interval == 0: if args.eval_interval and update % args.eval_interval == 0:
_start = time.time() _start = time.time()
...@@ -616,33 +619,36 @@ if __name__ == "__main__": ...@@ -616,33 +619,36 @@ if __name__ == "__main__":
return logits, value.squeeze(-1) return logits, value.squeeze(-1)
def loss_fn( def loss_fn(
params, rstate1, rstate2, obs, dones, mains, params, rstate1, rstate2, obs, dones, next_dones,
actions, logits, rewards, mask, next_value, next_done): mains, actions, logits, rewards, mask, next_value):
# (num_steps * local_num_envs // n_mb)) # (num_steps * local_num_envs // n_mb))
num_envs = next_value.shape[0] num_envs = next_value.shape[0]
num_steps = dones.shape[0] // num_envs num_steps = dones.shape[0] // num_envs
def reshape_time_series(x):
return jnp.reshape(x, (num_steps, num_envs) + x.shape[1:])
mask = mask * (1.0 - dones) mask = mask * (1.0 - dones)
n_valids = jnp.sum(mask) n_valids = jnp.sum(mask)
inputs = (rstate1, rstate2, obs, dones, mains) inputs = (rstate1, rstate2, obs, dones, mains)
new_logits, new_values = get_logits_and_value(params, inputs) new_logits, new_values = get_logits_and_value(params, inputs)
new_logits, new_values, logits, actions, rewards, dones, mains, mask = jax.tree.map(
lambda x: jnp.reshape(x, (num_steps, num_envs) + x.shape[1:]),
(new_logits, new_values, logits, actions, rewards, dones, mains, mask),
)
next_dones = jnp.concatenate([dones[1:], next_done[None, :]], axis=0)
ratios = distrax.importance_sampling_ratios(distrax.Categorical( ratios = distrax.importance_sampling_ratios(distrax.Categorical(
new_logits), distrax.Categorical(logits), actions) new_logits), distrax.Categorical(logits), actions)
logratio = jnp.log(ratios)
approx_kl = (((ratios - 1) - logratio) * mask).sum() / n_valids
ratios_, new_values_, rewards, next_dones, mains = jax.tree.map(
reshape_time_series, (ratios, new_values, rewards, next_dones, mains),
)
# TODO: TD(lambda) for multi-step # TODO: TD(lambda) for multi-step
target_values, advantages = vtrace_2p0s( target_values, advantages = vtrace_2p0s(
next_value, ratios, new_values, rewards, next_dones, mains, args.gamma, next_value, ratios_, new_values_, rewards, next_dones, mains, args.gamma,
args.rho_clip_min, args.rho_clip_max, args.c_clip_min, args.c_clip_max) args.rho_clip_min, args.rho_clip_max, args.c_clip_min, args.c_clip_max)
logratio = jnp.log(ratios) target_values, advantages = jax.tree.map(
approx_kl = (((ratios - 1) - logratio) * mask).sum() / n_valids lambda x: jnp.reshape(x, (-1,)), (target_values, advantages))
if args.ppo_clip: if args.ppo_clip:
pg_loss = clipped_surrogate_pg_loss( pg_loss = clipped_surrogate_pg_loss(
...@@ -671,7 +677,6 @@ if __name__ == "__main__": ...@@ -671,7 +677,6 @@ if __name__ == "__main__":
sharded_init_rstate1: List, sharded_init_rstate1: List,
sharded_init_rstate2: List, sharded_init_rstate2: List,
sharded_next_inputs: List, sharded_next_inputs: List,
sharded_next_done: List,
sharded_next_main: List, sharded_next_main: List,
key: jax.random.PRNGKey, key: jax.random.PRNGKey,
learn_opponent: bool = False, learn_opponent: bool = False,
...@@ -682,9 +687,7 @@ if __name__ == "__main__": ...@@ -682,9 +687,7 @@ if __name__ == "__main__":
jax.tree.map(lambda *x: jnp.concatenate(x), *x) jax.tree.map(lambda *x: jnp.concatenate(x), *x)
for x in [sharded_next_inputs, sharded_init_rstate1, sharded_init_rstate2] for x in [sharded_next_inputs, sharded_init_rstate1, sharded_init_rstate2]
] ]
next_main, next_done = [ next_main = jnp.concatenate(sharded_next_main)
jnp.concatenate(x) for x in [sharded_next_main, sharded_next_done]
]
# reorder storage of individual players # reorder storage of individual players
# main first, opponent second # main first, opponent second
...@@ -713,8 +716,8 @@ if __name__ == "__main__": ...@@ -713,8 +716,8 @@ if __name__ == "__main__":
return x return x
shuffled_init_rstate1, shuffled_init_rstate2, \ shuffled_init_rstate1, shuffled_init_rstate2, \
shuffled_next_value, shuffled_next_done = jax.tree.map( shuffled_next_value = jax.tree.map(
partial(convert_data, num_steps=1), (init_rstate1, init_rstate2, next_value, next_done)) partial(convert_data, num_steps=1), (init_rstate1, init_rstate2, next_value))
shuffled_storage = jax.tree.map( shuffled_storage = jax.tree.map(
partial(convert_data, num_steps=num_steps), storage) partial(convert_data, num_steps=num_steps), storage)
shuffled_mask = jnp.ones_like(shuffled_storage.mains) shuffled_mask = jnp.ones_like(shuffled_storage.mains)
...@@ -734,13 +737,13 @@ if __name__ == "__main__": ...@@ -734,13 +737,13 @@ if __name__ == "__main__":
shuffled_init_rstate2, shuffled_init_rstate2,
shuffled_storage.obs, shuffled_storage.obs,
shuffled_storage.dones, shuffled_storage.dones,
shuffled_storage.next_dones,
shuffled_storage.mains, shuffled_storage.mains,
shuffled_storage.actions, shuffled_storage.actions,
shuffled_storage.logits, shuffled_storage.logits,
shuffled_storage.rewards, shuffled_storage.rewards,
shuffled_mask, shuffled_mask,
shuffled_next_value, shuffled_next_value,
shuffled_next_done,
), ),
) )
return (agent_state, key), (loss, pg_loss, v_loss, entropy_loss, approx_kl) return (agent_state, key), (loss, pg_loss, v_loss, entropy_loss, approx_kl)
...@@ -765,7 +768,7 @@ if __name__ == "__main__": ...@@ -765,7 +768,7 @@ if __name__ == "__main__":
single_device_update, single_device_update,
axis_name="local_devices", axis_name="local_devices",
devices=global_learner_decices, devices=global_learner_decices,
static_broadcasted_argnums=(8,), static_broadcasted_argnums=(7,),
) )
params_queues = [] params_queues = []
......
...@@ -74,12 +74,12 @@ class Args: ...@@ -74,12 +74,12 @@ class Args:
"""the maximum number of options""" """the maximum number of options"""
n_history_actions: int = 32 n_history_actions: int = 32
"""the number of history actions to use""" """the number of history actions to use"""
greedy_reward: bool = True greedy_reward: bool = False
"""whether to use greedy reward (faster kill higher reward)""" """whether to use greedy reward (faster kill higher reward)"""
total_timesteps: int = 5000000000 total_timesteps: int = 50000000000
"""total timesteps of the experiments""" """total timesteps of the experiments"""
learning_rate: float = 1e-3 learning_rate: float = 3e-4
"""the learning rate of the optimizer""" """the learning rate of the optimizer"""
local_num_envs: int = 128 local_num_envs: int = 128
"""the number of parallel game environments""" """the number of parallel game environments"""
...@@ -93,16 +93,16 @@ class Args: ...@@ -93,16 +93,16 @@ class Args:
"""Toggle learning rate annealing for policy and value networks""" """Toggle learning rate annealing for policy and value networks"""
gamma: float = 1.0 gamma: float = 1.0
"""the discount factor gamma""" """the discount factor gamma"""
gae_lambda: float = 0.95 num_minibatches: int = 64
"""the lambda for the general advantage estimation"""
upgo: bool = False
"""Toggle the use of UPGO for advantages"""
num_minibatches: int = 8
"""the number of mini-batches""" """the number of mini-batches"""
update_epochs: int = 2 update_epochs: int = 2
"""the K epochs to update the policy""" """the K epochs to update the policy"""
norm_adv: bool = False norm_adv: bool = False
"""Toggles advantages normalization""" """Toggles advantages normalization"""
upgo: bool = True
"""Toggle the use of UPGO for advantages"""
gae_lambda: float = 0.95
"""the lambda for the general advantage estimation"""
clip_coef: float = 0.25 clip_coef: float = 0.25
"""the surrogate clipping coefficient""" """the surrogate clipping coefficient"""
dual_clip_coef: Optional[float] = 3.0 dual_clip_coef: Optional[float] = 3.0
...@@ -113,7 +113,7 @@ class Args: ...@@ -113,7 +113,7 @@ class Args:
"""the logits threshold for NeuRD and ACH, typically 2.0-6.0""" """the logits threshold for NeuRD and ACH, typically 2.0-6.0"""
ent_coef: float = 0.01 ent_coef: float = 0.01
"""coefficient of the entropy""" """coefficient of the entropy"""
vf_coef: float = 0.5 vf_coef: float = 1.0
"""coefficient of the value function""" """coefficient of the value function"""
max_grad_norm: float = 1.0 max_grad_norm: float = 1.0
"""the maximum norm for the gradient clipping""" """the maximum norm for the gradient clipping"""
...@@ -140,9 +140,9 @@ class Args: ...@@ -140,9 +140,9 @@ class Args:
eval_checkpoint: Optional[str] = None eval_checkpoint: Optional[str] = None
"""the path to the model checkpoint to evaluate""" """the path to the model checkpoint to evaluate"""
local_eval_episodes: int = 32 local_eval_episodes: int = 128
"""the number of episodes to evaluate the model""" """the number of episodes to evaluate the model"""
eval_interval: int = 50 eval_interval: int = 100
"""the number of iterations to evaluate the model""" """the number of iterations to evaluate the model"""
# runtime arguments to be filled in # runtime arguments to be filled in
...@@ -203,6 +203,7 @@ def create_agent(args, multi_step=False): ...@@ -203,6 +203,7 @@ def create_agent(args, multi_step=False):
dtype=jnp.bfloat16 if args.bfloat16 else jnp.float32, dtype=jnp.bfloat16 if args.bfloat16 else jnp.float32,
param_dtype=jnp.float32, param_dtype=jnp.float32,
lstm_channels=args.rnn_channels, lstm_channels=args.rnn_channels,
switch=True,
multi_step=multi_step, multi_step=multi_step,
freeze_id=args.freeze_id, freeze_id=args.freeze_id,
) )
...@@ -632,28 +633,30 @@ if __name__ == "__main__": ...@@ -632,28 +633,30 @@ if __name__ == "__main__":
num_envs = next_value.shape[0] num_envs = next_value.shape[0]
num_steps = dones.shape[0] // num_envs num_steps = dones.shape[0] // num_envs
def reshape_time_series(x):
return jnp.reshape(x, (num_steps, num_envs) + x.shape[1:])
mask = mask * (1.0 - dones) mask = mask * (1.0 - dones)
n_valids = jnp.sum(mask) n_valids = jnp.sum(mask)
real_dones = dones | next_dones dones = dones | next_dones
inputs = (rstate1, rstate2, obs, real_dones, switch) inputs = (rstate1, rstate2, obs, dones, switch)
new_logits, new_values = get_logits_and_value(params, inputs) new_logits, new_values = get_logits_and_value(params, inputs)
new_values_, rewards, next_dones, switch = jax.tree.map(
lambda x: jnp.reshape(x, (num_steps, num_envs) + x.shape[1:]),
(new_values, rewards, next_dones, switch),
)
ratios = distrax.importance_sampling_ratios(distrax.Categorical( ratios = distrax.importance_sampling_ratios(distrax.Categorical(
new_logits), distrax.Categorical(logits), actions) new_logits), distrax.Categorical(logits), actions)
logratio = jnp.log(ratios)
approx_kl = (((ratios - 1) - logratio) * mask).sum() / n_valids
new_values_, rewards, next_dones, switch = jax.tree.map(
reshape_time_series, (new_values, rewards, next_dones, switch),
)
target_values, advantages = truncated_gae_2p0s( target_values, advantages = truncated_gae_2p0s(
next_value, new_values_, rewards, next_dones, switch, next_value, new_values_, rewards, next_dones, switch,
args.gamma, args.gae_lambda, args.upgo) args.gamma, args.gae_lambda, args.upgo)
target_values, advantages = jax.tree.map( target_values, advantages = jax.tree.map(
lambda x: jnp.reshape(x, (-1,)), (target_values, advantages)) lambda x: jnp.reshape(x, (-1,)), (target_values, advantages))
logratio = jnp.log(ratios)
approx_kl = (((ratios - 1) - logratio) * mask).sum() / n_valids
if args.norm_adv: if args.norm_adv:
advantages = masked_normalize(advantages, mask, eps=1e-8) advantages = masked_normalize(advantages, mask, eps=1e-8)
...@@ -699,9 +702,7 @@ if __name__ == "__main__": ...@@ -699,9 +702,7 @@ if __name__ == "__main__":
jax.tree.map(lambda *x: jnp.concatenate(x), *x) jax.tree.map(lambda *x: jnp.concatenate(x), *x)
for x in [sharded_next_inputs, sharded_init_rstate1, sharded_init_rstate2] for x in [sharded_next_inputs, sharded_init_rstate1, sharded_init_rstate2]
] ]
next_main, = [ next_main = jnp.concatenate(sharded_next_main)
jnp.concatenate(x) for x in [sharded_next_main]
]
# reorder storage of individual players # reorder storage of individual players
# main first, opponent second # main first, opponent second
...@@ -722,9 +723,7 @@ if __name__ == "__main__": ...@@ -722,9 +723,7 @@ if __name__ == "__main__":
next_value = create_agent(args).apply( next_value = create_agent(args).apply(
agent_state.params, next_inputs)[2].squeeze(-1) agent_state.params, next_inputs)[2].squeeze(-1)
# TODO: check if this is correct next_value = jnp.where(next_main, -next_value, next_value)
sign = jnp.where(switch_steps <= num_steps, 1.0, -1.0)
next_value = jnp.where(next_main, -sign * next_value, sign * next_value)
def convert_data(x: jnp.ndarray, num_steps): def convert_data(x: jnp.ndarray, num_steps):
if args.update_epochs > 1: if args.update_epochs > 1:
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment